An Integrated Fuzzy Multi-Criteria Approach for Partner Selection in Horizontal Cooperation
DOI:
https://doi.org/10.61089/aot2025.s00ve156Keywords:
horizontal cooperation , joint distribution, partner selection, transportation, logisticsAbstract
Horizontal collaboration in transportation and logistics has arisen as a strategic method to enhance transportation efficiency, decrease logistical expenses, and bolster competitive advantage via pooled resources and knowledge. The methodical identification of suitable partners is a crucial determinant for the success of these collaborations. This paper presents an integrated fuzzy multi-criteria decision-making framework for partner selection, specifically focusing on transportation networks to address this intricate decision-making difficulty. The suggested technique integrates Fuzzy Extent Analysis with the Analytic Hierarchy Process (Fuzzy EW-AHP) to ascertain the relative significance of assessment criteria, and employs the Technique for Order Preference by Similarity to Ideal Solution (Fuzzy TOPSIS) to evaluate prospective partners. The technique adeptly utilizes fuzzy logic to address the ambiguity and subjectivity involved in assessing logistics and transportation performance. Computational tests illustrate the framework's efficacy in discovering appropriate partner combinations that improve joint distribution, minimize transport-related inefficiencies, and foster sustainable logistics practices. The results underscore the framework's practical applicability in facilitating strategic decision-making within transportation-oriented horizontal cooperation. Subsequent study may broaden this methodology to various logistical contexts and investigate further transportation-specific metrics for partner assessment.
References
1. Allen, J., Browne, M., Woodburn, A., & Leonardi, J. (2014, January). A review of urban consoli-dation centres in the supply chain based on a case study approach. In Supply Chain Forum: an in-ternational journal, 15(4), 100-112. Taylor & Francis. https://doi.org/10.1080/16258312.2014.11517361
2. Aloui, A., Hamani, N., Derrouiche, R., & Delahoche, L. (2021). Systematic literature review on collaborative sustainable transportation: overview, analysis and perspectives. Transportation Re-search Interdisciplinary Perspectives, 9, 100291. https://doi.org/10.1016/j.trip.2020.100291
3. Angelelli, E., Morandi, V., & Speranza, M. G. (2022). Optimisation models for fair horizontal collaboration in demand-responsive transportation. Transportation Research Part C: Emerging Technologies, 140, 103725. https://doi.org/10.1016/j.trc.2022.103725
4. Asawasakulsorn, A. (2009). Transportation collaboration: partner selection criteria and inter-organisational system (IOS) design issues for supporting trust. International Journal of Business and Information, 4(2), 199-220.
5. Audy, J. F., Lehoux, N., D'Amours, S., & Rönnqvist, M. (2012). A framework for an efficient implementation of logistics collaborations. International transactions in operational research, 19(5), 633-657. https://doi.org/10.1111/j.1475-3995.2010.00799.x
6. Ayadi, O., Halouani, N., & Masmoudi, F. (2016). A fuzzy collaborative assessment methodology for partner trust evaluation. International Journal of Intelligent Systems, 31(5), 488-501. https://doi.org/10.1002/int.21791
7. Awasthi, A., Adetiloye, T., & Crainic, T. G. (2016). Collaboration partner selection for city logis-tics planning under municipal freight regulations. Applied Mathematical Modelling, 40(1), 510-525. https://doi.org/10.1016/j.apm.2015.04.058
8. Badea, A., Prostean, G., Goncalves, G., & Allaoui, H. (2014). Assessing risk factors in collabora-tive supply chain with the analytic hierarchy process (AHP). Procedia-Social and Behavioral Sci-ences, 124, 114-123. https://doi.org/10.1016/j.sbspro.2014.02.467
9. Bae, K. H., Mustafee, N., Lazarova-Molnar, S., & Zheng, L. (2022). Hybrid modeling of collabora-tive freight transportation planning using agent-based simulation, auction-based mechanisms, and optimization. Simulation, 98(9), 753-771. https://doi.org/10.1177/00375497221075614
10. Bahrami, K. (2002). Improving supply chain productivity through horizontal cooperation—The case of consumer goods manufacturers. In Cost management in supply chains (pp. 213-232). Phys-ica-Verlag HD. https://doi.org/10.1007/978-3-662-11377-6_13
11. Basso, F., D'Amours, S., Rönnqvist, M., & Weintraub, A. (2019). A survey on obstacles and diffi-culties of practical implementation of horizontal collaboration in logistics. International Transac-tions in Operational Research, 26(3), 775-793. https://doi.org/10.1111/itor.12577
12. Ben Salah, S., Ben Yahia, W., Ayadi, O., & Masmoudi, F. (2018). Definition and classification of collaborative network: MCDM approaches for partner selection problem. In Design and Modeling of Mechanical Systems—III: Proceedings of the 7th Conference on Design and Modeling of Me-chanical Systems, CMSM'2017, March 27–29, Hammamet, Tunisia 7 (pp. 733-744). Springer In-ternational Publishing. https://doi.org/10.1007/978-3-319-66697-6_71
13. Blomqvist, K. (2002). Partnering in the dynamic environment: The role of trust in asymmetric technology partnership formation. Lappeenranta University of Technology.
14. Bocewicz, G., Nielsen, I., Gola, A., Banaszak, Z. (2021). Reference model of milk-run traffic systems prototyping. International Journal of Production Research, 59(15), 4495-4512. https://doi.org/10.1080/00207543.2020.1766717
15. Cao, M., & Zhang, Q. (2011). Supply chain collaboration: Impact on collaborative advantage and firm performance. Journal of operations management, 29(3), 163-180. https://doi.org/10.1016/j.jom.2010.12.008
16. Chakraborty, A., Mondal, S. P., Alam, S., Pamucar, D., & Marinkovic, D. (2022). A new idea to evaluate networking problem and MCGDM problem in parametric interval valued pythagorean are-na. Discrete Dynamics in Nature and Society, 2022(1), 7369045. https://doi.org/10.1155/2022/7369045
17. Cruijssen, F., Dullaert, W., & Fleuren, H. (2007). Horizontal cooperation in transport and logistics: a literature review. Transportation journal, 46(3), 22-39. https://doi.org/10.2307/20713677
18. Daudi, M., Hauge, J. B., & Thoben, K. D. (2016). Behavioral factors influencing partner trust in logistics collaboration: a review. Logistics Research, 9, 1-11. https://doi.org/10.1007/s12159-016-0146-7
19. Ding, S., & Kaminsky, P. M. (2020). Centralized and decentralized warehouse logistics collabora-tion. Manufacturing & Service Operations Management, 22(4), 812-831. https://doi.org/10.1287/msom.2019.0774
20. Ding T, Huang Z. (2024). Uncovering the Research Hotspots in Supply Chain Risk Management from 2004 to 2023: A Bibliometric Analysis. Sustainability, 16(12), 5261. https://doi.org/10.3390/su16125261
21. Ferrell, W., Ellis, K., Kaminsky, P., Rainwater, C. (2019). Horizontal collaboration: Opportunities for improved logistics planning. International Journal of Production Research, 58, 4267–4284. https://doi.org/10.1080/00207543.2019.1651457
22. Flisberg, P., Frisk, M., Rönnqvist, M., & Guajardo, M. (2015). Potential savings and cost allocations for forest fuel transportation in Sweden: A country-wide study. Energy, 85, 353-365. https://doi.org/10.1016/j.energy.2015.03.105
23. Franco, M. (2010). Partner selection criteria in cooperative agreements: influence from contextual factors. International Journal of Business Environment, 3(3), 267-291. https://doi.org/10.1504/ijbe.2010.034824
24. Gazi, K. H., Mondal, S. P., Chatterjee, B., Ghorui, N., Ghosh, A., & De, D. (2023). A new syner-gistic strategy for ranking restaurant locations: A decision-making approach based on the hexagonal fuzzy numbers. RAIRO-operations research, 57(2), 571-608. https://doi.org/10.1051/ro/2023025
25. Ghorui, N., Mondal, S. P., Chatterjee, B., Ghosh, A., Pal, A., De, D., & Giri, B. C. (2023). Selection of cloud service providers using MCDM methodology under intuitionistic fuzzy uncertainty. Soft Computing, 27(5), 2403-2423. https://doi.org/10.1007/s00500-022-07772-8
26. Ghosh, A., Ghorui, N., Mondal, S. P., Kumari, S., Mondal, B. K., Das, A., & Gupta, M. S. (2021). Application of hexagonal fuzzy MCDM methodology for site selection of electric vehicle charging station. Mathematics, 9(4), 393. https://doi.org/10.3390/math9040393
27. He, Y., Wang, X., Lin, Y., & Zhou, F. (2016). Optimal partner combination for joint distribution alliance using integrated fuzzy EW-AHP and TOPSIS for online shopping. Sustainability, 8(4), 341. https://doi.org/10.3390/su8040341
28. Kwon, I. W. G., & Suh, T. (2004). Factors affecting the level of trust and commitment in supply chain relationships. Journal of supply chain management, 40(1), 4-14. https://doi.org/10.1111/j.1745-493x.2004.tb00165.x
29. Kwon, I. W. G., & Suh, T. (2005). Trust, commitment and relationships in supply chain manage-ment: a path analysis. Supply chain management: an international journal, 10(1), 26-33. https://doi.org/10.1108/13598540510578351
30. Lehoux, N., D’Amours, S., & Langevin, A. (2014). Inter-firm collaborations and supply chain coordination: review of key elements and case study. Production Planning & Control, 25(10), 858-872. https://doi.org/10.1080/09537287.2013.771413
31. Lin, C. W. R., & Chen, H. Y. S. (2004). A fuzzy strategic alliance selection framework for supply chain partnering under limited evaluation resources. Computers in industry, 55(2), 159-179. https://doi.org/10.1016/j.compind.2004.02.003
32. Maheshwari, B., Kumar, V., & Kumar, U. (2006). Optimizing success in supply chain partnerships. Journal of Enterprise Information Management, 19(3), 277-291. https://doi.org/10.1108/17410390610658469
33. Marty, J., & Ruel, S. (2024). Why is “supply chain collaboration” still a hot topic? A review of decades of research and a comprehensive framework proposal. International Journal of Production Economics, 273, 109259. https://doi.org/10.1016/j.ijpe.2024.109259
34. Mason, R., Lalwani, C., Boughton, R.(2007). Combining vertical and horizontal collaboration for transport optimization. Supply Chain Management 12(3), 187-199. https://doi.org/10.1108/13598540710742509
35. McLaren, T., Head, M., & Yuan, Y. (2002). Supply chain collaboration alternatives: understanding the expected costs and benefits. Internet research, 12(4), 348-364. https://doi.org/10.1108/10662240210438416
36. Mishra, S., Sahu, A. K., Datta, S., & Mahapatra, S. S. (2015). Application of fuzzy integrated MULTIMOORA method towards supplier/partner selection in agile supply chain. International Journal of Operational Research, 22(4), 466-514. https://doi.org/10.1504/ijor.2015.068562
37. Momena, A. F., Mandal, S., Gazi, K. H., Giri, B. C., & Mondal, S. P. (2023). Prediagnosis of dis-ease based on symptoms by generalized dual hesitant hexagonal fuzzy multi-criteria decision-making techniques. Systems, 11(5), 231. https://doi.org/10.3390/systems11050231
38. Montoya-Torres, J. R., Muñoz-Villamizar, A., & Vega-Mejía, C. A. (2016). On the impact of col-laborative strategies for goods delivery in city logistics. Production Planning & Control, 27(6), 443-455. https://doi.org/10.1080/09537287.2016.1147092
39. Mrabti N, Hamani N, Delahoche L. (2022). A Comprehensive Literature Review on Sustainable Horizontal Collaboration. Sustainability, 14(18), 11644. https://doi.org/10.3390/su141811644
40. Muñoz-Villamizar, A., Quintero-Araújo, C.L., Montoya-Torres, J.R., Faulin, J., 2019a. Short- and mid-term evaluation of the use of electric vehicles in urban freight transport collaborative net-works: a case study. Int. J. Logist. Res. Appl. 22 (3), 229–252. https://doi.org/10.1080/13675567.2018.1513467
41. Ouhader, H., kyal, M.E. (2017). Analysis of Partner Selection Problem in Horizontal Collaboration Among Shippers. In: Bektaş, T., Coniglio, S., Martinez-Sykora, A., Voß, S. (eds) Computational Logistics. ICCL 2017. Lecture Notes in Computer Science(), vol 10572. Springer, Cham. https://doi.org/10.1007/978-3-319-68496-3_13
42. Parvatiyar, A., & Sheth, J. N. (2001). Customer relationship management: Emerging practice, pro-cess, and discipline. Journal of Economic & Social Research, 3(2).
43. Pomponi, F., Fratocchi, L., & Rossi Tafuri, S. (2015). Trust development and horizontal collabora-tion in logistics: a theory based evolutionary framework. Supply Chain Management: An Interna-tional Journal, 20(1), 83-97. https://doi.org/10.1108/scm-02-2014-0078
44. Ponte, B., Fernández, I., Rosillo, R., Parreño, J., & García, N. (2016). Supply chain collaboration: A Game-theoretic approach to profit allocation. Journal of Industrial Engineering and Management, 9(5), 1020-1034. https://doi.org/10.3926/jiem.2084
45. Saenz, M.J., Ubaghs, E., Cuevas, A.I. (2015). Vertical Collaboration and Horizontal Collaboration in Supply Chain. In: Enabling Horizontal Collaboration Through Continuous Relational Learning. SpringerBriefs in Operations Research. Springer, Cham. https://doi.org/10.1007/978-3-319-08093-2_3.
46. Sheffi, Y., Saenz, M. J., Rivera, L., & Gligor, D. (2019). New forms of partnership: the role of logistics clusters in facilitating horizontal collaboration mechanisms. European Planning Studies, 27(5), 905-931. https://doi.org/10.1080/09654313.2019.1575797
47. Shukla, R. K., Garg, D., & Agarwal, A. (2014). An integrated approach of Fuzzy AHP and Fuzzy TOPSIS in modeling supply chain coordination. Production & Manufacturing Research, 2(1), 415-437. https://doi.org/10.1080/21693277.2014.919886
48. Solesvik, M. Z., & Encheva, S. (2010). Partner selection for interfirm collaboration in ship design. Industrial Management & Data Systems, 110(5), 701-717. https://doi.org/10.1108/02635571011044731
49. Soosay, C. A., Hyland, P. W., & Ferrer, M. (2008). Supply chain collaboration: capabilities for continuous innovation. Supply chain management: An international journal, 13(2), 160-169. https://doi.org/10.1108/13598540810860994
50. Soysal, M., Bloemhof-Ruwaard, J. M., Haijema, R., & van der Vorst, J. G. (2018). Modeling a green inventory routing problem for perishable products with horizontal collaboration. Computers & Operations Research, 89, 168-182. https://doi.org/10.1016/j.cor.2016.02.003
51. Stank, T. P., Keller, S. B., & Daugherty, P. J. (2001). Supply chain collaboration and logistical service performance. Journal of Business logistics, 22(1), 29-48. https://doi.org/10.1002/j.2158-1592.2001.tb00158.x
52. Tatarczak, A. (2020). A decision making support system in logistics cooperation using a modified VIKOR method under an intuituinistic fuzzy environment. LogForum, 16(2). https://doi.org/10.17270/j.log.2020.436
53. Venkatesh, V. G., Zhang, A., Deakins, E., Luthra, S., & Mangla, S. (2019). A fuzzy AHP-TOPSIS approach to supply partner selection in continuous aid humanitarian supply chains. Annals of Op-erations Research, 283, 1517-1550. https://doi.org/10.1007/s10479-018-2981-1
54. Wang Chen, H. M., Chou, S. Y., Luu, Q. D., & Yu, T. H. K. (2016). A fuzzy MCDM approach for green supplier selection from the economic and environmental aspects. Mathematical Problems in Engineering, 2016(1), 8097386. https://doi.org/10.1155/2016/8097386
55. Wu, C., Lin, C., Barnes, D., & Zhang, Y. (2020). Partner selection in sustainable supply chains: A fuzzy ensemble learning model. Journal of Cleaner Production, 275, 123165. https://doi.org/10.1016/j.jclepro.2020.123165
Downloads
Published
Data Availability Statement
Not applicable. The study does not involve any publicly archived datasets or supplementary data materials.
Issue
Section
License
Copyright (c) 2025 Archives of Transport journal allows the author(s) to hold the copyright without restrictions.

This work is licensed under a Creative Commons Attribution 4.0 International License.