Simulation reconstruction of the pilot ejection process using the K-36DM ejection seat

Authors

DOI:

https://doi.org/10.61089/aot2025.a4bewn26

Keywords:

ejection seat, emergency system, mathematical model of ejection seat motion, simulations

Abstract

The article discusses the method of reconstructing the ejection process. Measurement data were obtained during field tests on an actual object. These data served as the basis for validating the mathematical model of the seat-pilot system’s motion. This model describes the spatial motion of the K-36DM ejection seat. The article includes a description of the mathematical model and a comparison of the measured motion parameters with the calculation results. It also presents computed parameters that were not recorded during the tests. Particular attention was paid to the reconstruction of the flight trajectory and seat rotation and the determination of the G-forces acting on the pilot. The primary objective of the research was to develop a mathematical model of the pilot ejection process using the K-36DM ejection seat. In addition to classical equations of motion, such as linear motion of the seat along the guide rails and motion of the seat along the rails with rotation around the lower pair of rollers, the model also considered the free motion of the seat-autopilot system, taking into account the forces acting on the seat-autopilot system. In this work, four phases of the chair movement were modeled, i.e. phase 1: After activation of the first pyrotechnic charge, the seat moves in a straight line along the guide rails until the two upper pairs of rollers disengage from the rails; phase 2: The seat continues moving along the guide rails using the lower pair of rollers until it exits the cockpit. Simultaneously, the seat begins to rotate relative to this pair of rollers; phase 3: The seat moves through the air; initially, it is propelled by the second pyrotechnic charge, providing the necessary flight altitude; phase 4: The pilot separates from the seat and descends under a parachute.

References

1. Bastug, E., Serin, N., Elaldi, F. (2025). Trajectory analysis and flight modeling of combat aircrafts ejection seats. Chinese Journal of Aeronautics, 38(2), 103267, https://doi.org/10.1016/j.cja.2024.09.043.

2. Chen, D. H., Wu, W. H., Wang J. J., Huang Y. (2007). Investigation on the aerodynamic perfor-mance of an ejection seat. The Aeronautical Journal, 111(1120), 373-380, https://doi.org/10.1017/S0001924000004620.

3. Dowództwo Wojsk Lotniczych (1985). Fotel katapultowy K-36DM. Opis techniczny i eksploata-cja.

4. Głowiński, S., Krzyżyński, T. (2010). Simulation of trajectory of an aircraft seat ejection. Symula-cja w Badaniach i Rozwoju, 1, 4, 343-351.

5. Głowiński, S., Krzyżyński, T. (2011). On modeling of ejection process in a training combat air-craft. Archives of Transport, 23(3), 291-302, https://doi.org/10.2478/v10174-011-0020-y.

6. Głowiński, S., Krzyżyński, T. (2013). Modelling of the Ejection Process in a Symmetrical Flight. Journal of Theoretical and Applied Mechanics, 51, 3, 775-785.

7. Gołda, P., Zawisza, T., & Izdebski, M. (2021). Evaluation of efficiency and reliability of airport processes using simulation tools. Eksploatacja i Niezawodność, 23(4): 659-669, https://doi.org/10.17531/ein.2021.4.8.

8. Izdebski, M., Jacyna, M., Bogdański, J. (2024). Minimisation of the Energy Expenditure of Electric Vehicles in Municipal Service Companies, Taking into Account the Uncertainty of Charging Point Operation, Energies, t.17, s. 1–21, https://doi.org/10.3390/en17092179.

9. Izdebski, M., Jacyna-Gołda, I., Gołębiowski, P., & Plandor, J. (2020). The optmization tool sup-porting supply chain management in the multi-criteria approach. Archives of Civil Engineer-ing, 66(3), 505-524, https://doi.org/10.24425/ace.2020.134410.

10. Izdebski, M., Michalska, A., Jacyna-Gołda, I., Gherman, L. (2024). Prediction of cyber-attacks in air transport using neural networks. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 26(4), 191476, http://doi.org/10.17531/ein/191476.

11. Jacyna, M., Żochowska, R., Sobota, A., & Wasiak, M. (2022). Decision support for choosing a scenario for organizing urban transport system with share of electric vehicles. Zeszyty Naukowe. Transport/Politechnika Śląska, 117, 69-89, https://doi.org/10.20858/sjsutst.2022.117.5.

12. Jacyna-Gołda, I., Izdebski, M., & Murawski, J. (2017). The assumptions to the ant algorithm in the assignment of vehicles to tasks in the production companies. In 21th International Conference Transport Means. Kaunas University of Technology, 985-991.

13. Jacyna-Gołda, I., Lewczuk, K., Szczepański, E., & Murawski, J. (2015). Computer Aided Imple-mentation of Logistics Processes–Selected Aspects. In International Conference on Transport Sys-tems Telematics. Cham: Springer International Publishing, 67-80, https://doi.org/10.1007/978-3-319-24577-5_7.

14. Kowaleczko, G., Długołęcki, A., Sosnowski M. (2018). The mathematical model of the pilot’s ejection proces by using the K-36DM ejection seat. Journal of KONBiN, 48, 515 - 528, https://doi.org/10.2478/jok-2018-0069.

15. Kowalski, M., Izdebski, M., Żak, J., Gołda, P., & Manerowski, J. (2021). Planning and manage-ment of aircraft maintenance using a genetic algorithm. Eksploatacja i Niezawodność, 23(1):143-153, https://doi.org/10.17531/ein.2021.1.15.

16. Lasota, M. K., Sokołowski, M., Wojdat, C., & Pierzak, A. (2025). Risk of adverse events in the transportation of oversize cargoes. Maintenance & Reliability/Eksploatacja i Niezawodność, 27(1): 197383, https://doi.org/10.17531/ein/197383.

17. Lasota, M., Jacyna, M., & Szaciłło, L. (2024). Fault tree method as a decision-making tool for assessing the risks of transportation of dangerous loads. Zeszyty Naukowe. Transport/Politechnika Śląska, 123, 133-154, https://doi.org/10.20858/sjsutst.2024.123.6.

18. Mao, XD, Lin, GP, Yu, J. (2011). Predicting ejection velocity of ejection seat via back propagation neural network. J Aircr, 48(2):668, https://doi.org/10.2514/1.C031196.

19. Maryniak, J., Maryniak, A., Ładyżyńska-Kozdraś, E., Folte, U. (2004). Modelowanie i symulacja numeryczna katapultowania z samolotu systemu fotel+pilot – obciążenie pilota. Mechanika w Lot-nictwie, XI.

20. Naveen, Raj, R., Shankar, K. (2022). A two stage neural network for choosing optimal ejection parameters in low altitude seat ejection based on novel injury parameter. Optim Eng 23, 827–853, https://doi.org/10.1007/s11081-021-09607-1.

21. Parate, B. A. (2022). Science And Technology of Aircraft Seat Ejection: Advanced Concepts. Cogent Engineering, 9(1): 2034267, https://doi.org/10.1080/23311916.2022.2034267.

22. Rahman, M.M., Prakash, V., Chandel1 S., Thakur, D.G., Čep, R., Khedkar, N., Salunkhe, S., Abouel, Nasr E.S. (2023). Analysis of the aerodynamic characteristics of an ejection seat system using computational fluid dynamics, Frontiers in Mechanical Engineering, 9:1255051, https://doi: 10.3389/fmech.2023.1255051.

23. Ramm, A.G., Kaleps, I. (1994). Modeling of the ejection process. Mathematical and Computer Modelling, 20(1), 95-101, https://doi.org/10.1016/0895-7177(94)90221-6.

24. Reichenau, D.E.A. (1972). Aerodynamic Characteristics of an Ejection Seat Escape System with a Stabilization Parachute at Mach Numbers from 0.3 throught 1.2, AEDC-TR-72-51, 42.

25. Semenov, I., Jacyna, M., Auguściak, I., & Wasiak, M. (2025). Hybrid Human–AI Collaboration for Optimized Fuel Delivery Management. Energies, 18(19), 5203. https://doi.org/10.3390/en18195203.

26. Stępień, S, Szajnar, S, Jasztal, M. (2017). Problems of military aircraft crew’s safety in condition of enemy counteraction. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 19(3), 441–446, http://dx.doi.org/10.17531/ein.2017.3.15.

27. Szajnar, S., Jasztal, M. (2002). Wyznaczenie i analiza charakterystyk masowych układu fotel kata-pultowy – pilot, Biuletyn WAT, Vol. 51, nr 8, 59-71.

28. Szczepański, E., Jacyna-Gołda, I., & Murawski, J. (2014). Genetic algorithms based approach for transhipment hub location in urban areas. Archives of Transport, 31(3), 73-82, https://doi.org/10.5604/08669546.1146989.

29. Szczepański, E., Żak, J., Jacyna-Gołda, I., & Murawski, J. (2017). Simulation support of freight delivery schedule in urban areas. Procedia Engineering, 187, 520-525.

30. Szendzielorz, Cz. (1986). Dynamika ruchu fotela odrzucanego względem samolotu w locie syme-trycznym, Mechanika Teoretyczna i Stosowana, 1/2, 24.

31. Voleti, S., McLean, A. L., Upchurch, E. H., Hampton, J. L., Sugiyama, H., & Richard, H. A. (2024). A Multi-domain Simulation Framework for Modeling an Aircraft Ejection Event. In AIAA SCITECH 2024 Forum, https://doi.org/10.2514/6.2024-0049.

32. Wachnik, B., Pryciński, P., Murawski, J., & Nader, M. (2021). An analysis of the causes and con-sequences of the information gap in IT projects. The client’s and the supplier’s perspective in Po-land. Archives of Transport, 60(4), 219-244, https://doi.org/ 10.1117/12.3064981.

33. Yu, J., Lin, G., Mao, X. (2010). Numerical Simulation of Ejection Seat and Analysis of Perfor-mance Under Adverse Attitudes. Acta Aeronautica et Astronautica Sinica, 31(10): 1927-1932.

34. Zhang, D. (2009). The Numerical Simulation of Flow Around Ejection System, Modern Physics Letters B, 23, 3, 489-492, https://doi.org/10.1142/S0217984909018722.

Downloads

Published

2025-12-12

Issue

Section

Original articles

How to Cite

Kowaleczko, G., Pietraszek, M., Długołęcki, A., Izdebski, M., & Oszczak, S. (2025). Simulation reconstruction of the pilot ejection process using the K-36DM ejection seat. Archives of Transport, 76(4), 7-28. https://doi.org/10.61089/aot2025.a4bewn26

Share

Similar Articles

41-50 of 401

You may also start an advanced similarity search for this article.