The use of a linear half-vehicle model for the optimization of damping in the passive suspension system of a railway car

Authors

  • Zbigniew Lozia Warsaw University of Technology, Faculty of Transport, Warsaw, Poland Author
  • Ewa Kardas-Cinal Warsaw University of Technology, Faculty of Transport, Warsaw, Poland Author

DOI:

https://doi.org/10.5604/08669546.1225448

Keywords:

railway vehicle, suspension system, damping coefficient, optimization, half-vehicle model

Abstract

The paper presents a methodology of optimizing the parameters of the passive suspension system of a railway vehicle. A linear half-vehicle model and an example of the procedure carried out to optimize a selected parameter of the model have been demonstrated. A method of the selection of damping in the suspension system of a railway vehicle, based on over 40-year achievements of the cited authors of publications in the field of motor vehicles, has been shown. The optimization of linear damping in the secondary suspension system of a passenger carriage moving on a track with random profile irregularities has been described in detail. The algorithms adopted for the calculations have a wider range of applicability; especially, they may be used for determining the optimum values of the other parameters of the railway vehicle model under analysis, i.e. stiffness of the secondary suspension system as well as stiffness and damping of the primary suspension system.

References

ARCZYŃSKI, S., 1993. Mechanika ruchu samochodu (Mechanics of motion of the motor vehicle). Warszawa: Wydawnictwo Naukowo Techniczne.

CHOROMAŃSKI, W., ZBOIŃSKI, K., 1991. Optimizations of wheel-rail profiles for various condition of vehicle motion. The Dynamics of Vehicle on Roads and on Tracks, Supplement to Vehicle System Dynamics, 20, pp. 84-98.

CHUDZIKIEWICZ, A. 1995. Study on the relation between the traveling speed and forces within the wheel/rail contact zone depending on the state of track maintenance. Machine Dynamics Problems 11, pp. 7-19.

CROLLA, D. A., 1996. Vehicle dynamics – theory into practice. Journal of Automobile Engineering, 1996(210), pp. 83-94.

FIRTH, G., R., 1991. The performance of vehicle suspensions fitted with controllable dampers. Ph. D. thesis, Department of Mechanical Engineering, The University of Leeds.

GOBBI, M., LEVI, F., MASTINU, G., 2006. Multi-objective stochastic optimization of the suspension system of road vehicles. Journal of Sound and Vibration, 298(4), pp. 1055-1072.

GOBBI, M., MASTINU, G., 2001. Analytical description and optimization of the dynamic behaviour of passively suspended vehicles. Journal of Sound and Vibration, 245(3), pp. 457-481.

GRZYB, A., BOGACZ, R., 2015. Wspomagana komputerowo analiza dynamiczna pojazdów szynowych (Computer-aided dynamic analysis of railway vehicles). Cracow University of Technology, Kraków 2015.

ISO 2631–1, 1985 & 1997. Mechanical vibration and shock. evaluation of human exposure to whole-body vibration. Part 1: General Requirements. International Organization for Standardization.

KALKER, J., J., 1982. A fast algorithm for the simplified theory of rolling contact. Vehicle System Dynamics, 11(1), pp. 1-13.

KAMIŃSKI, E., POKORSKI, J., 1983. Teoria samochodu. Dynamika zawieszeń i układów napędowych pojazdów samochodowych (Automobile theory. Dynamics of suspension systems and powertrains of motor vehicles). Warszawa: WKŁ.

KARDAS-CINAL, E., 2006. Investigation of ride comfort in a railway vehicle in the presence of random track irregularities. Archives of Transport, 18(1), pp. 5-16.

KARDAS-CINAL, E., 2013. Bezpieczeństwo i komfort jazdy pojazdu szynowego z uwzględnieniem losowych nierówności geometrycznych toru (Running safety and ride comfort of railway vehicle in the presence of random geometrical track irregularities). A monograph. Prace Naukowe Politechniki Warszawskiej, Transport, (94/2013), Warsaw University of Technology.

KASPRZYK, T., PROCHOWSKI, L., 1990. Teoria samochodu. Obciążenia dynamiczne zawieszeń (Automobile theory. Dynamic loads on suspension systems).Warszawa: WKŁ..

KASPRZYK, T., PROCHOWSKI, L., SZURKOWSKI, Z., 1974. Optymalizacja własności sprężystych i dobór konstrukcji ogumienia samochodu osobowego dla różnych warunków eksploatacji (Optimization of the spring characteristics and selection of the construction of passenger car tyres for different operation conditions). Part I: Technika Motoryzacyjna, 10, pp. 10-12, Part II: Technika Motoryzacyjna, 11, pp. 14-19.

KIM, T. S., HONG, K. S., KIM, R. K., PARK, J. W., HUH, C. D., 2007. Modified sensitivity control of a semi-active suspension system with MR-damper for ride comfort improvement. Journal of the KSME (A), 31(1), pp. 129-138.

KISILOWSKI, J. (ed), 1991. Dynamika układu mechanicznego pojazd szynowy – tor (Dynamics of the railway vehicle-track mechanical system). Warszawa: PWN.

KONIECZNY, J., 2011. Laboratory tests of active suspension system. Journal of KONES Powertrain and Transport, 18(1), pp. 263-272.

KWARCIŃSKI, T., 2007. Sprawiedliwość czy efektywność? Analiza wykorzystująca ekonometryczny model wzrostu gospodarczego z historycznie optymalnym zróżnicowaniem płac (Justice or efficiency? Analysis using an econometric model of economic growth with historically optimal diversity of wages). Acta Universitatis Lodziensis, Folia Oeconomica, 213, 109-124.

LI, H., GOODALL, R., M., 1999. Linear and non-linear skyhook damping control laws for active railway suspensions. Control Engineering Practice, 7, pp. 843-850.

LIANG, T. Y., WANG, Z. D., TANG, M. X., ZHANG, W.L., 2012. Study on semi-active secondary suspension of railway vehicle. Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE 2011), Institute of Electrical and Electronics Engineers (IEEE), pp. 1269-1272.

LOZIA, Z., 1985. Wybrane zagadnienia symulacji cyfrowej procesu hamowania samochodu dwuosiowego na nierównej nawierzchni drogi (Selected problems of digital simulation of the process of braking a two-axle motor vehicle on uneven road surface). Phd Thesis, Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering.

LOZIA, Z., 2016. The use of a linear quarter-car model to optimize the damping in a passive automotive suspension system – a follow-on from many authors’ works of the recent 40 years. The Archives of Automotive Engineering – Archiwum Motoryzacji, 71(1), pp. 33-65.

MEIROVITCH, L. 1975. Elements of vibration analysis. McGraw-Hill Kogakusha.

MITSCHKE, M., 1977. Teoria samochodu. Dynamika samochodu (Automobile theory. Dynamics of motor vehicles). Warszawa: WKŁ.

MITSCHKE, M., 1989. Dynamika samochodu (Motor vehicle dynamics). Vol. 2: Drgania (Vibrations). Warszawa: WKŁ.

MULUKA, V., 1998. Optimal suspension damping and axle vibration absorber for reduction of dynamic tire loads. M. of A. Sc. thesis. Concordia University, The Department of Mechanical Engineering. Montreal, Quebec, Canada.

NEWLAND, D. E., 1984: An introduction to random vibrations and spectral analysis. 2nd edition. Longman.

O’BRIEN, E. J., CATHAL, B., PARAIC, Q., 2015. Determination of vertical alignment of track using accelerometer readings. IMechE Stephenson Conference for Railways: Research for Railways, pp. 21-23.

ORE B176, 1989. Bogies with steered or steering wheelsets, RP1, Utrecht, Netherlands.

ORVNÄS, A., 2010. Methods for reducing vertical carbody vibration of a rail vehicle. A literature survey. Report in Railway Technology, Sweden: Stockholm.

ORVNÄS, A., 2011. On active secondary suspension in rail vehicles to improve ride comfort. Doctoral Thesis in Railway Technology. KTH, Stockholm, Sweden.

OSIECKI, J., 1979. Podstawy analizy drgań mechanicznych (Fundamentals of the analysis of mechanical vibrations). Kielce University of Technology, Kielce.

OSIECKI, J., 1994. Dynamika maszyn (Machinery dynamics). Military University of Technology, Warszawa.

OSIECKI, J., GROMADOWSKI, T., STĘPIŃSKI, B., 2006. Badania pojazdów samochodowych i ich zespołów na symulacyjnych stanowiskach badawczych (Testing of automotive vehicles and their components on simulation test stands). Radom-Warszawa: Wydawnictwo Instytutu Technologii Eksploatacji – PIB (Publishing House of the Institute for Sustainable Technologies – National Research Institute),

PATIL, S. A., JOSHI, S. G., 2014. Experimental analysis of 2 DOF quarter-car passive and hydraulic active suspension systems for ride comfort. Systems Science & Control Engineering: An Open Access Journal, 2, pp. 621–631.

PIOTROWSKI, J., 1990. Poprzeczne oddziaływanie między pojazdem i torem − podstawy modelowania numerycznego (Lateral vehicle-track interaction – fundamentals of numerical modelling). Prace Naukowe Politechniki Warszawskiej, Mechanika, 118. Warsaw University of Technology, Warszawa.

ROTENBERG, R. W., 1974. Zawieszenie samochodu (Automobile suspension system). Warszawa: WKŁ.

RYBA, D., 1974. Improvements of dynamic characteristics of automobile suspension systems (Part I. Two-mass systems). Vehicle System Dynamics, 3, pp. 17-46.

SEKULIĆ, D., DEVIDOVIĆ, V., 2011. The effect of stiffness and damping of the suspension system elements on the optimization of the vibrational behavior of a bus. International Journal for Traffic and Transport Engineering, 1(4), pp. 231-244.

SHARP, R. S., CROLLA, D. A., 1987. Road vehicle suspension system design – a review. Vehicle System Dynamics, 16, pp. 167-192.

SHARP, R. S., HASSAN, S. A., 1986. An evaluation of passive automotive suspension systems with variable stiffness and damping parameters. Vehicle System Dynamics, 15, pp. 335-350.

SIM, K. S., PARK, T. W., KIM, W. H., LEE, J. H., 2013. A study on ride improvement of a high speed train using skyhook control. 3rd International Conference on Mechanical, Production and Automobile Engineering (ICMPAE'2013) January 4-5, 2013 Bali (Indonesia).

ŚLASKI, G., 2012. Studium projektowania zawieszeń samochodowych o zmiennym tłumieniu (A study on designing variable-damping automotive suspension systems). Poznań: Wydawnictwo Politechniki Poznańskiej, Series “Dissertations”, 481.

VERROS, G., NATSIAVAS, S., PAPADIMITRIOU, C., 2005. Design optimization of quarter-car models with passive and semi-active suspensions under random excitation. Journal of Vibration and Control, 11, pp. 581-606.

WICKENS, A., 1976. Steering and dynamic stability of railway vehicles. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 5(1-2), pp. 15-46.

WONG, J. Y., 2001.: Theory of ground vehicles. Canada-USA: John Wiley & Sons, Inc.

YI, K. S., SONG, B. S., 1999. Observer design for semi-active suspension control. Vehicle System Dynamics, 32, pp. 129-148.

ZBOIŃSKI, K., 2000. Metodyka modelowania dynamiki pojazdów szynowych z uwzględnieniem zadanego ruchu unoszenia i jej zastosowania (Methodology of modelling the railway vehicle dynamics with taking into account a predefined reference frame motion; applications of the methodology). Prace Naukowe Politechniki Warszawskiej, Transport, 43, pp. 3-213.

ZBOIŃSKI, K., 2004. Numerical and traditional modelling of dynamics of multi-body system in type of a railway vehicle. Archives of Transport, 16(3), 2004, pp. 82-106.

ZHOU, J., GOODALL, R., REN, L., ZHANG, H., 2009. Influences of car body vertical flexibility on ride quality of passenger railway vehicles. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(5), pp. 461-471.

Downloads

Published

2016-09-30

Issue

Section

Original articles

How to Cite

Lozia, Z., & Kardas-Cinal, E. (2016). The use of a linear half-vehicle model for the optimization of damping in the passive suspension system of a railway car. Archives of Transport, 39(3), 31-49. https://doi.org/10.5604/08669546.1225448

Share

Similar Articles

1-10 of 207

You may also start an advanced similarity search for this article.