Analysis of factors affecting the performance of an aviation system using selected models

Authors

DOI:

https://doi.org/10.61089/aot2025.w98msn71

Keywords:

UAV, battery, energy consumption , energy management

Abstract

The aim of this study is to quantitatively analyze the factors influencing energy consumption in unmanned aerial vehicles (UAVs) based on operational data from 177 flights of the DJI Matrice 30T drone. Battery consumption modelling was proposed using variables available at the UAV user level. A comparison of analytical methods (linear regression, LASSO) and machine learning algorithms (Random Forest, XGBoost) was performed. The models were then evaluated using the coefficient of determination R^2 and the root mean square error RMSE. Analytical methods show moderate effectiveness (R^2 = 0.425, RMSE = 14.87%), while machine learning models show significantly higher predictive accuracy: Random Forest achieved R^2 = 0.983 and RMSE = 0.328%, and XGBoost R^2 – 0.973 and RMSE = 3.26%. The analysis of variable significance shows that the greatest impact on energy consumption is exerted by: flight time, distance traveled, and discharge current. Seasonal factors also proved to be significant, indicating the impact of weather conditions on battery discharge dynamics. The results confirm the superiority of adaptive machine learning methods over classical analytical models in forecasting UAV energy consumption based on operational data and indicate the direction for further research taking into account detailed meteorological data. Unlike previous studies, this study is based on operational data from actual UAV missions and uses only variables available from the user’s perspective. It also provides a methodical comparison of analytical approaches and machine learning algorithms on a single real-world flight log dataset and additionally considers the impact of seasonality and operating conditions on battery consumption – an aspect largely overlooked in the literature.

References

1. Aslan, E. (2025). Temperature Prediction and Performance Comparison of Permanent Magnet Synchronous Motors Using Different Machine Learning Techniques for Early Failure Detection. Eksploatacja i Niezawodność – Maintenance and Reliability, 27(1). https://doi.org/10.17531/ein/192164

2. Barnhart, R. K., Marshall, D. M., Shappee, E. (2021). Introduction to unmanned aircraft systems. Crc Press. https://doi.org/10.1201/9780429347498

3. Bassi, E. (2019, June). European drones regulation: Today’s legal challenges. In 2019 international conference on unmanned aircraft systems (ICUAS) (pp. 443-450). IEEE. https://doi.org/10.1109/ICUAS.2019.8798173

4. Chen, X., Cheng, X., Wu, N., Liu, X. (2024). Unmanned aerial vehicle transmission defect detection technology based on edge computing. Diagnostyka, 25. https://doi.org/10.29354/diag/194598

5. Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peerj computer science, 7, e623. https://doi.org/10.7717/peerj-cs.623

6. Di Franco, C., & Buttazzo, G. (2015, April). Energy-aware coverage path planning of UAVs. In 2015 IEEE international conference on autonomous robot systems and competitions (pp. 111-117). IEEE. https://doi.org/10.1109/ICARSC.2015.17

7. Eskandari, R., Mahdianpari, M., Mohammadimanesh, F., Salehi, B., Brisco, B., & Homayouni, S. (2020). Meta-analysis of unmanned aerial vehicle (UAV) imagery for agro-environmental monitoring using machine learning and statistical models. Remote Sensing, 12(21), 3511. https://doi.org/10.3390/rs12213511

8. Fatima, S., Hussain, A., Amir, S. B., Ahmed, S. H., & Aslam, S. M. H. (2023). XGBoost and random forest algorithms: an in depth analysis. Pakistan Journal of Scientific Research, 3(1), 26-31. https://doi.org/10.57041/pjosr.v3i1.946

9. Gong, H., Huang, B., Jia, B., & Dai, H. (2023). Modeling power consumptions for multirotor UAVs. IEEE Transactions on Aerospace and Electronic Systems, 59(6), 7409-7422. https://doi.org/10.1109/TAES.2023.3288846

10. Góra, K., Smyczyński, P., Kujawiński, M., & Granosik, G. (2022). Machine learning in creating energy consumption model for uav. Energies, 15(18), 6810. https://doi.org/10.3390/en15186810

11. Grzelak, M., Borucka, A., & Guzanek, P. (2021, June). Application of linear regression for evaluation of production processes effectiveness. In International Conference Innovation in Engineering (pp. 36-47). Cham: Springer International Publishing.https://doi.org/10.1007/978-3-030-78170-5_4

12. Hang, T., Wen, J., Zheng, B. S., Xiao, J. H., Zhou, F. (2024). Reliability analysis of the vehicle door system EDCU based on Weibull distribution. Eksploatacja i Niezawodność – Maintenance and Reliability, 27(2). https://doi.org/10.17531/ein/195257

13. https://app.airdata.com/wiki/Help/Downloadable+Flight+Data+CSV (Access from 16.03.2025r.)

14. https://developer.dji.com/doc/mobile-sdk-tutorial/en/basic-introduction/basic-concepts/flight-control.html#body-coordinate-system (Access from 16.03.2025r.)

15. Karunarathne, L., Economou, J. T., & Knowles, K. (2012). Power and energy management system for fuel cell unmanned aerial vehicle. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 226(4), 437-454. https://doi.org/10.1177/0954410011409995

16. Kim, S. J., Lim, G. J., & Cho, J. (2018). Drone flight scheduling under uncertainty on battery duration and air temperature. Computers & Industrial Engineering, 117, 291-302. https://doi.org/10.1016/j.cie.2018.02.005

17. Kozłowski, E., Borucka, A., Oleszczuk, P., Leszczyński, N. (2024). Evaluation of readiness of the technical system using the semi-Markov model with selected sojourn time distributions. Eksploatacja i Niezawodność – Maintenance and Reliability, 26(4). https://doi.org/10.17531/ein/191545

18. Lai, J., Zou, Y., Zhang, J., & Peres‐Neto, P. R. (2022). Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package. Methods in Ecology and Evolution, 13(4), 782-788. https://doi.org/10.1111/2041-210X.13800

19. Li, J., Ding, P. (2024). Application of DBN-based KRLS method for RUL prediction of lithium-ion batteries. Eksploatacja i Niezawodność – Maintenance and Reliability, 27(2). https://doi.org/10.17531/ein/194174

20. Li, J., Ding, P. (2024). Application of DBN-based KRLS method for RUL prediction of lithium-ion batteries. Eksploatacja i Niezawodność – Maintenance and Reliability, 27(2). https://doi.org/10.17531/ein/194174

21. Li, N., Liu, X., Yu, B., Li, L., Xu, J., & Tan, Q. (2021). Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions. Energy, 219, 119481. https://doi.org/10.1016/j.energy.2020.119481

22. Luo, X., Bu, W., Liang, H., Zheng, M. (2025). Convolutional Neural Network - Gated Recurrent Unit combined with Error Correction for Lithium Battery State of Health Estimation. Eksploatacja i Niezawodność – Maintenance and Reliability, 27(4). https://doi.org/10.17531/ein/202184

23. Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., & Alsharif, M. H. (2022). Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones, 6(6), 147. https://doi.org/10.3390/drones6060147

24. P, J.S., D, A.D., C, R.L., & R, N. (2025) Efficiency and Reliability: Optimization of Energy Management in Electric Vehicles Apply Monarch Butterfly Algorithm and Fuzzy Logic Control. Eksploatacja i Niezawodność – Maintenance and Reliability, 27(3). http://doi.org/10.17531/ein/200691

25. Poorani, S., Jebarani Evangeline, S., Bagyalakshmi, K., Maris Murugan, T. (2025). Improving Reliability in Electric Vehicle Battery Management Systems through Deep Learning-Based Cell Balancing Mechanisms. Eksploatacja i Niezawodność – Maintenance and Reliability, 27(3). http://doi.org/10.17531/ein/200714

26. Ravich, T. M. (2019). Emerging technologies and enforcement problems: The Federal Aviation Administration and drones as a case study. Loy. U. Chi. J. Reg. Compl., 4, 34.

27. Sang, T., Zhu, K., Shen, J., Yang, L. (2025). An uncertain programming model for fixed charge transportation problem with item sampling rates. Eksploatacja i Niezawodność – Maintenance and Reliability, 27(1). https://doi.org/10.17531/ein/192165

28. Sfyridis, A., & Agnolucci, P. (2023). Factors affecting road traffic: identifying drivers of annual average daily traffic using least absolute shrinkage and selection operator regression. Transportation research record, 2677(5), 1178-1192. https://doi.org/10.1177/03611981221141435

29. Shibl, M. M., Ismail, L. S., & Massoud, A. M. (2023). A machine learning-based battery management system for state-of-charge prediction and state-of-health estimation for unmanned aerial vehicles. Journal of Energy Storage, 66, 107380. https://doi.org/10.1016/j.est.2023.107380

30. Szczupak, P., Kossowski, T., Szostek, K., Szczupak, M. (2025). Tests of pulse interference from lightning discharges occurring in unmanned aerial vehicle housings made of carbon fibers. Eksploatacja i Niezawodność – Maintenance and Reliability, 27(1). https://doi.org/10.17531/ein/193984

31. Traub, L. W. (2011). Range and endurance estimates for battery-powered aircraft. Journal of Aircraft, 48(2), 703-707. https://doi.org/10.2514/1.C031027

32. Wang, Z., Shangguan, W., Peng, C., Cai, B. (2024). Similarity based remaining useful life prediction for lithium-ion battery under small sample situation based on data augmentation. Eksploatacja i Niezawodność – Maintenance and Reliability, 26(1). https://doi.org/10.17531/ein/175585

33. Wanner, D., Hashim, H. A., Srivastava, S., & Steinhauer, A. (2024). UAV avionics safety, certification, accidents, redundancy, integrity, and reliability: a comprehensive review and future trends. Drone Systems and Applications, 12, 1-23. https://doi.org/10.1139/dsa-2023-0091

34. Xi, L. J., Guo, Z. Y., Yang, X. K., & Ping, Z. G. (2023). Application of LASSO and its extended method in variable selection of regression analysis. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine], 57(1), 107-111. https://doi.org/10.3760/cma.j.cn112150-20220117-00063

35. Zhang, Z., Li, L., Li, X., Hu, Y., Huang, K., Xue, B., ... & Yu, Y. (2022). State‐of‐health estimation for the lithium‐ion battery based on gradient boosting decision tree with autonomous selection of excellent features. International Journal of Energy Research, 46(2), 1756-1765. https://doi.org/10.1002/er.7292

36. Ziółkowski, J., Oszczypała, M., Lęgas, A., Konwerski, J., Małachowski, J. (2024). A method for calculating the technical readiness of aviation refuelling vehicles. Eksploatacja i Niezawodność – Maintenance and Reliability, 26(3). https://doi.org/10.17531/ein/187888

Downloads

Published

2025-09-30

Issue

Section

Original articles

How to Cite

Gładysz, P., Merkisz , J. ., & Borucka, A. . (2025). Analysis of factors affecting the performance of an aviation system using selected models. Archives of Transport, 75(3), 25-39. https://doi.org/10.61089/aot2025.w98msn71

Share

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

21-30 of 153

You may also start an advanced similarity search for this article.