The use of LoRa technology as an alternative to GPS in the navigation of a mountain vehicle intended for people with special needs

Authors

  • Ireneusz Celiński Department of Transport Systems, Traffic Engineering and Logistics, Faculty of Transport and Aviation Engineering, Silesian University of Technology Author https://orcid.org/0000-0002-9253-0994
  • Marcin Staniek Department of Transport Systems, Traffic Engineering and Logistics, Faculty of Transport and Aviation Engineering, Silesian University of Technology Author https://orcid.org/0000-0002-2503-080X

DOI:

https://doi.org/10.61089/aot2025.cyhvt759

Keywords:

LoRa, GPS, IMU, MTB, people with special needs

Abstract

The navigation system for such a vehicle may use hardware solutions that differ in price, functionality, user-friendliness and problems associated with their operation. The navigation of such an off-road vehicle may be based on: GPS, LoRa wireless communication, and IMU inertial units. However, as the first half of 2024 has shown, this system is experiencing significant disruptions. In extreme situations, it may even be disabled (e.g. because of warfare). Where special-purpose off-road vehicles for PWSN are operated in mountainous terrain, especially on rocky ground with various structures, IMUs are particularly susceptible to errors building up during travel. This article addresses the research on the LoRa technology envisaged for implementation in a navigation system intended for this type of vehicle. Given the foregoing premises, it is crucial to determine the possibility of effective exchange of information in the transmitter-receiver system using the LoRa protocol for purposes of communication in difficult mountainous terrain, in the presence of obstacles, and often under harsh weather conditions. The pilot studies discussed in this article were conducted with the above problems in mind. This article formulates assumptions for a navigation system based on the LoRa standard. Based on the studies conducted by the authors, both the implementation validity as well as the advantages and disadvantages of the solution proposed have been described. The research results imply that the solution in question can be treated as an alternative if the GPS signal is either unavailable or significantly disturbed, and its additional features provide significant support for PWSN using off-road vehicles.

References

1. AI-Thinker product specification, Ra-02 LoRa Module, (2024). https://docs.ai-thinker.com/_media/lora/docs/c048ps01a1_ra-02_product_specification_v1.1.pdf

2. Al-Saman, A.M., Cheffena, M., Azmi, M.M., Ai, Y. (2020). Statistical analysis of rain at millimeter waves in tropical area. IEEE Access, 8, 51.

3. Apollo, M. (2017). The true accessibility of mountaineering: The case of the High Himalaya, Journal of Outdoor Recreation and Tourism, 17, 29-43. https://doi.org/10.1016/j.jort.2016.12.001

4. Aqel, M., Marhaban, M. (2016). Review of visual odometry: types, approaches, challenges, and applications. Springer Plus. 5. https://doi.org/10.1186/s40064-016-3573-7

5. Arduino platform documentation: UNO rev. 3, (2024). https://docs.arduino.cc/hardware/uno-rev3/

6. Augustin, A., Clausen, T., Townsley, W.M. (2016). A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. Sensors, 16(9), 1466. https://doi.org/10.3390/s16091466

7. Augustin, A., Yi, J., Heide, C.T., Townsley, W. (2016). A Study of LoRa: Long Range and Low Power Networks for the Internet of Things. Sensors, 16, 1466. https://doi.org/10.3390/s16091466

8. Bachras, V., Raptis, G.E., Avouris, N.M. (2019). On the Use of Persistent Spatial Points for Deploying Path Navigation in Augmented Reality: An Evaluation Study. 17th IFIP Conference on Human-Computer Interaction, Sep 2019, Paphos, Cyprus, 309-318,

9. Benckendorff, P., Edwards, D., Jurowski, C., Liburd, J., Miller, G., Moscardo, G. (2009). Exploring the Future of Tourism and Quality of Life. Tourism and Hospitality Research, 9

10. Bezerra, N.S., Ahlund, C., Saguna, S. de Sousa, V.A. (2019). Temperature impact in LoRaWAN - a case study in northern Sweden. Sensors, 19(20), 4414.

11. Blazejczyk, K. (2019). Sezonowa i wieloletnia zmienność niektórych elementów klimatu w Tatrach i Karkonoszach w latach 1951-2015. Seasonal and multiannual variability of selected elements of climate in the Tatra and Karkonosze Mts over the 1951-2015 period. Przegląd Geograficzny, 91, 41-62.

12. Boano, C.A., Cattani, M., Römer, K. (2018). Impact of temperature variations on the reliability of lora - an experimental evaluation. Sensornets, 1, 39–50. https://doi.org/10.5220/0006605600390050.

13. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32 (6), 1309–1332. https://doi.org/10.1109/tro.2016.2624754.

14. Calc Maps, (2024, July 12). https://www.calcmaps.com/pl/map-elevation/

15. Clery, E., Kiss, Z., Gill, T. (2017). Disabled people’s travel behaviour and attitudes to travel, Crown. https://assets.publishing.service.gov.uk/media/5a82f1c6ed915d74e62386b6/

16. Comport, A.I., Malis, E., Rives, P. (2010). Real-time Quadrifocal Visual Odometry. International Journal of Robotics Research, 29 (2–3), 245–266. https://doi.org/10.1177/0278364909356601.

17. Crassidis, J. (2022). What Is Navigation? Journal of Guidance, Control, and Dynamics, 45, 1-3. https://doi.org/10.2514/1.G006817.

18. Cyberdefence24.pl. website article. (2024, July 12). Zakłócenia GPS w Polsce. Jakiego sprzętu może używać Rosja? https://cyberdefence24.pl/armia-i-sluzby/zaklocenia-gps-w-polsce-jakiego-sprzetu-moze-uzywac-rosja

19. Deng, H., Zhang, A., Ma, J., Kang, Z. (2011). Interactive panoramic map-like views for 3D mountain navigation, Computers & Geosciences, 37(11), 1816-1824.

20. DFRobot, Fire Beatle, (2024, July 10). https://wiki.dfrobot.com/FireBeetle_Covers-LoRa_Radio_ 915MHz_SKU_TEL0122

21. Dietze, L., Böhm, K. (2005). Position Determination of Reference Points in Surveying. https://doi.org/10.1007/3-540-26982-7_14.

22. Du, D., Lew, A., Ng, P. (2016). Tourism and Economic Growth. Journal of Travel Research, 55, 454-464. https://doi.org/10.1177/0047287514563167

23. Dutka, E. (2022). Tatry – bezkresne i zamieszkiwane, niszczone i chronione. O antynomiach przestrzeni górskiej w pismach Jana Gwalberta Pawlikowskiego. Prace i Studia Geograficzne, 67, 83-97. https://doi.org/10.48128/pisg/2022-67.2-05.

24. Edinio, J., Gbadoubissa, Z., Ari, A.A.A., Radoi, E., Gueroui, A.M., (2023). M-Ary Direct Modulation Chirp Spread Spectrum for Spectrally Efficient Communications. Information, 2023, 14 (6), 323.

25. Ehnstrom, K. (2022). Wheelchair Travel Guide Improving participation in people with mobility deficits, Boston Univ. SPT. https://aldconnect.org/wp-content/uploads/2023/03/Wheelchair-Travel-Guide.pdf

26. Elmahdy, H., Ramadan, M. (2009). Improving the performance of anti-GPS signal. https://www.researchgate.net/publication/228896687_Improving_the_performance_of_anti-GPS_signal

27. ESP 32 Wroom, (2024, July 8). https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf

28. ETSI EN 300 220-1, (2024, July 2) https://www.etsi.org/deliver/etsi_en/300200_300299/30022001/03.01.01_60/en_30022001v030101p.pdf

29. Fargas, B.C., Petersen, M.N. (2017). GPS-free geolocation using LoRain low-power WANs, GIoTS - Global Internet of Things Summit, Proceedings.

30. Ferran, A., Vilajosana, X., Tuset-Peiro (2017). Understanding the limits of LoRaWAN. IEEE Communications Magazine, 55. https://doi.org/10.1109/MCOM.2017.1600613

31. Ferreira, A. E., Ortiz, M., Costa, F., Foubert, L. Amadou, B., Mitton, N. (2020). A study of the LoRa signal propagation in forest, urban, and suburban environments. Annals of Telecommunications, 75. https://doi.org/10.1007/s12243-020-00789-w

32. García, S., Amatria, M., Dios, R. ,Ruibal-Lista, B., Muriel, I. (2022). Review of the Organizational Structures of the Trail Running, Skyrunning and Mountain Running Modalities in Spain. Sustainability. https://doi.org/10.3390/su141912401.

33. Ghadirzadeh, M. (2018). GPS free geolocation in lora networks. https://www.politesi.polimi.it/retrieve/

34. Grier, P. (1996). GPS in Peace and War, Air Force Magazine, 1996.

35. Hinsley, S., Hill, R., Bellamy, P., Balzter, H. (2006). The application of lidar in woodland bird ecology: Climate, canopy structure, and habitat quality, 1399-1406.

36. Honey, S., Myint, M.S.S. (2017). Tourist Guide Information System using Google Map and GPS International Journal of Advanced Engineering Research and Science (IJAERS),4(3), https://doi.org/10.22161/ijaers.4.3.32

37. Jaulin, L. (2011). Range-only SLAM with occupancy maps; A set-membership approach (PDF). IEEE Transactions on Robotics, 27 (5), 1004–1010. https://doi.org/10.1109/TRO.2011.2147110.S2CID 52801599

38. Johnson, A.E., Cheng,Y., Montgomery, J., Trawny, N., Tweddle, B., Zheng, J. (2013). Real-time terrain relative navigation test results from a relevant environment for Mars landing,” AIAA Guidance, Navigation, and Control Conference, 1–13.

39. Johnson, A.E., Montgomery, J.F. (2008). Overview of Terrain Relative Navigation approaches for precise lunar landing. IEEE Aerospace Conference Proceedings, 2008.

40. Kakoulaki, G., Martinez, A., Florio, P. (2021). Non-commercial Light Detection and Ranging (LiDAR) data in Europe. https://doi.org/10.2760/212427.

41. Kepper, J., Kinsey, J. (2018). A Navigation Solution Using a MEMS IMU, Model-Based Dead-Reckoning, and One-Way-Travel-Time Acoustic Range Measurements for Autonomous Underwater Vehicles. IEEE Journal of Oceanic Engineering, 1-19. https://doi.org/10.1109/JOE.2018.2832878.

42. Kietzmann, P., Alamos, J., Kutscher,D., Schmidt, T.C., Wählisch, M. (2024). Rethinking LoRa for the IoT: An InformationCentric Approach, IEEE Communications Magazine.

43. Kolobe, L.G., Lebekwe, C., Sigweni, B. (2021). LoRa Network Planning and Deployment: A Terrestrial Navigation Application. IEEE Access. 1. https://doi.org/10.1109/ACCESS.2021.3111830.

44. Krevs, M., Repe, B., Mazej, T. (2023). Reconsidering the basics of mountain trail categorisation: case study in Slovenia. European Journal of Geography, 14, 44-63. https://doi.org/10.48088/ejg.m.kre.14.2.044.063.

45. Kumar, L.S., Lee, Y.H., Ong, J.T. (2010). Truncated gamma drop size distribution models for rain attenuation in Singapore, IEEE Transactionson Antennas and Propag., 58(4), 1325–1335.

46. Kuo, Ting-Yu, Chu, Hung-Kuo, Chang, Yung-Ju. (2020). Comparing the effects of reference-based, orientation-based, and turn-by-turn navigation guidance on users' independent navigation. https://doi.org/10.1145/3410530.3414424

47. Latif, S., Lindbäck, T., Lideskog, H., Karlberg, M. (2024). Outdoor Tests of Autonomous Navigation System Based on Two Different Reference Points of PurePursuit Algorithm for 10-ton Articulated Vehicle, IEEacess, 12, https://doi.org/10.1109/ACCESS.2024.3353616

48. Lohani, B., Ghosh, S. (2017). Airborne LiDAR Technology: A Review of Data Collection and Processing Systems. Proceedings of the National Academy of Sciences, India Section A: Physical Sci. 87. https://doi.org/10.1007/s40010-017-0435-9

49. LoRa Alliance, https://lora-alliance.org/wp-content/uploads/2020/11/RP_2-1.0.2.pdf

50. Mackey, M., Spachos, P. (2019). LoRa-based Localization System for Emergency Services in GPS-less Environments, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 2019, pp. 939-944, https://doi.org/10.1109/INFCOMW.2019.8845189

51. Mapa turystyczna; (2024, July 03). https://mapa-turystyczna.pl/#49.53599/19.29448/13

52. Mapping and Performance (2024, July 7) Check of the Supply of Accessible Tourism Services Case Study 10: The Historical Centre of Athens as an Accessible Destination, Greece. https://www.accessibletourism.org/resources/case-study-10-ec-athens-historical-centre-greece.pdf

53. Marzuki, M., Kozu, T., Shimomai,T., Randeu, W., Hashiguchi, H., Shibagaki, Y. (2009). Diurnal variation of rain attenuation obtained from mea-surement of raindrop size distribution in equatorial Indonesia. IEEE Transactions on Antennas and Propagation, 57(4), 1191–1196.

54. McCabe, J.S., Demars, K.J. (2020). Anonymous feature processing for efficient onboard navigation,” AIAA Scitech 2020 Forum, 1, Part F, 1–20

55. Miao, Z. (2016). A Method of Reference Point Range for Field Navigation of Agricultural Robot Advanced Science and Technology Letters, 123, 90-94. http://dx.doi.org/10.14257/astl.2016.123.18

56. Mulugeta, S., Kassa, T. (2022). Investigation of GPS Loss of Lock occurrence and Its characteristics over Ethiopia using Geodetic GPS receivers of the IGS network, Advances in Space Research, 69(2), 939-950, https://doi.org/10.1016/j.asr.2021.10.035

57. Murdyantoro, E., Nugraha, A.W.W., Wardhana, A.W., Fadli, A., Zulfa, M.I. (2019). A review of LoRa technology and its potential use for rural development in Indonesia. AIP Conf. Proc. 17 April 2019; 2094 /1. https://doi.org/10.1063/1.5097480

58. Neo6 modulle, (2024, July 04). https://content.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_%28GPS.G6-HW-09005%29.pdf

59. Nevatia, I., Chaudhary, V., Pandian, N.T. (2025). Smart Forest Navigation System Using LoRa and Dynamic Pathfinding," in IEEE Access, vol. 13, pp. 114428-114443, 2025, https://doi.org/10.1109/ACCESS.2025.3580463.

60. Noreen, U., Bounceur, A., Clavier, L. (2017). A study of LoRa low power and wide area network technology, 1-6. https://doi.org/10.1109/ATSIP.2017.8075570

61. Norlezah, H., Fakrulradzi, I., Anisa, A., Siti, J., Nor, M., Norfariza, W. (2021). Location tracking using LoRa. International Journal of Electrical and Computer Engineering (IJECE). 11. 3123. 10.11591/ijece.v11i4.pp3123-3128.

62. Nyasha, S., Odhiambo, N., Asongu, S. (2020): The Impact of Tourism Development on Economic Growth in Sub-Saharan Africa. European J. of Development Research, 33(6),1514-1535, https://doi.org/10.1057/s41287-020-00298-5

63. Ohtsu, K. (2015). Layout of reference points during navigation: Effects of a central reference point as anchor,1419. https://ceur-ws.org/Vol-1419/paper0075.pdf

64. Olakunle, E., Rahim, A., Sittakul,S., Al-samman, S., Cheffena,A., Din, M., Tharek, A. (2021). Effect of Weather Condition on LoRa IoT Communication Technology in a Tropical Region: Malaysia. IEEE Access, 1. https://doi.org/10.1109/ACCESS.2021.3080317

65. Park, H. (2020). Measuring & Managing Park Carrying Capacity Final report: August 2020. https://doi.org/10.13140/RG.2.2.25482.49606.

66. Park, K., Nasr, E.H., Novack, V., Sheen, J., Hadayeghi, H., Song, Z., Christensen, K. (2022). Impacts of disability on daily travel behaviour: A systematic review. Transport Reviews, 43, 1-26. https://doi.org/10.1080/01441647.2022.2060371.

67. Petajajarvi, J., Pettissalo, M., Mikhaylov, K., Roivainen, A., Hänninen, T. (2015). On the Coverage of LPWANs: Range Evaluation and Channel Attenuation Model for LoRa Technology. https://doi.org/10.1109/ITST.2015.7377400.

68. Prato, T. (2001). Modeling carrying capacity for national parks. Ecological Economics. 39. 321-331. https://doi.org/10.1016/S0921-8009(01)00248-8.

69. Rozporządzenie Ministra Transportu i Gospodarki Morskiej (2024, July 23). z dnia 2 marca 1999 r. w sprawie warunków technicznych, jakim powinny odpowiadać drogi publiczne i ich usytuowanie https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU19990430430

70. Rydell, J., Otterlind, O., Butun, I. (2022). Delay Considerations for Reliable Communications in LoRaWAN, 1-6. https://doi.org/10.1109/CCNC49033.2022.9700629

71. Sanchez, H.A., (2021, July 8). Terrain-Relative Navigation for Precision Landings based on a Hierarchical Localization Approach, https://d-scholarship.pitt.edu/41874/1/LiSanchez_etdPitt2021.pdf

72. Sarko, A., Bakhtiar, I. (2022). LoRa: A Proposed Connectivity Technology for Internet of Things Applications in the Kurdistan Region of Iraq. https://www.researchgate.net/publication/

73. Sarko, S.A., Bakhtiar, I.S. (2021). LoRa: A Proposed Connectivity Technology for Internet of Things Applications in the Kurdistan Region of Iraq, 6(2), 20-34, https://www.researchgate.net/publication/ 360375393_LoRa_A_Proposed_Connectivity_Technology_for_Internet_of_Things_Applications_in_the_Kurdistan_Region_of_Iraq

74. Savchuk, V., Pasichnyk, V. (2015). Modern tendention in the use of gps technology in tourism industry. Econtechmod. An international quarterly journal – 2015, 4(3), 65-72.

75. Schmidt, G.T. (2015) Navigation Sensors and Systems in GNSS Degraded and Denied Environments. Chinese Journal of Aeronautics, https://doi.org/10.1016/j.cja.2014.12.001.

76. Shoval, N. Isaacson, M., Chhetri, P. (2014). GPS, Smartphones, and the Future of Tourism Research. https://doi.org/10.1002/9781118474648.ch20.

77. Sierpiński, G., Staniek, M. (2017) Heuristic approach in a multimodal travel planner to support local authorities in urban traffic management, Transportation Research Procedia, 27, 640-647, https://doi.org/10.1016/j.trpro.2017.12.027.

78. Sinha, R.S, Wei, Y., Hwang, S.H. (2017). A survey on LPWA technology: LoRa and NB-IoT, ICT Express, 3(1), 14-21. https://doi.org/10.1016/j.icte.2017.03.004.

79. Sornin, N., Luis, M, Eirich, T., Kramp, T., Hersent, O. (2015). LoRa Specification 1.0. Lora Alliance Standard specification., Jan. 2015., www.lora-alliance.org.

80. Springer, A., Gugler, W., Huemer, M., Reindl, L., Ruppel, C., Weigel, R. (2000). Spread spectrum communications using chirp signals. Euro Comm Conference, 166 - 170. https://doi.org/10.1109/EURCOM.2000.874794.

81. Staniek, M., Celiński, I. (2025). Vision control of an off-road vehicle designed for people with special needs, Applied Science, three positive reviews.

82. Staniek, M., Celiński, I.: Digital twin of specialized off-road vehicle for peoples with special needs. Lecture notes in networks and systems. 2026, Elżbieta Macioszek; Grzegorz Sierpiński; Irena Jurdana (Eds). Smart, and Environmentally Friendly Contemporary Road Traffic and Transportation Solution. Sringer Nature (accepted for printing, October 2025)

83. Sundling, C., Ceccato, V., Gliori, G. (2024). Disability, victimisation, and safety in train travel, Transportation Research Interdisciplinary Perspectives, V. 25, 2024, 101131,https://doi.org/10.1016/j.trip.2024.101131.

84. Talla, V., Hessar, M., Kellogg, B., Najafi,A., Smith, J.R., Gollakota, S. (2017). LoRa Backscatter: Enabling The Vision of Ubiquitous Connectivity. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1(3). https://doi.org/10.1145/3130970

85. Urbański, R. (2018) Trail running- management, organization, safety, evaluation. The activity of ITRA Association. Journal of Education, Health and Sport, 8(08), 1236-1249. http://dx.doi.org/10.5281/zenodo.1468049, http://ojs.ukw.edu.pl/index.php/johs/article/view/6212

86. Ustawa z dnia 30 sierpnia 2019 r. (2024, July 3). o zmianie ustawy o wspieraniu rozwoju usług i sieci telekomunikacyjnych oraz niektórych innych ustaw https://sip.lex.pl/akty-prawne/dzu-dziennik-ustaw/zmiana-ustawy-o-wspieraniu-rozwoju-uslug-i-sieci-telekomunikacyjnych-18894369

87. Westbrook, T. (2019). The Global Positioning System and Military Jamming: The geographies of electronic warfare. Journal of Strategic Security, 12, 1-16. https://doi.org/10.5038/1944-0472.12.2.1720

88. Yi-Han, J., Chi-Hsin, H., Syun Tsai, Kai-Wei Chiang (2023). A Multi-IMU Based Self-contained Pedestrian Navigation Algorithm, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. XLVIII-1/W1-2023 12th International Symposium on Mobile Mapping Technology, 24–26.

89. Yu, J., Wang, F., Zhang, D., Weng, L. (2010). Vision heading navigation based on navigation curve. 2010 International Conference on Intelligent Computing and Integrated Systems, Guilin, 290-293, https://doi.org/10.1109/ICISS.2010.5657096.

90. Zhang, F., Chang, Z., Niu, K., Xiong, J., Beihong, J. (2020). Exploring LoRa for longrange through-wall sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4 (2), 68.

91. Zhang, S., He, L., Wu, L. (2020). Statistical Study of Loss of GPS Signals Caused by Severe and Great Geomagnetic Storms. Journal of Geophysical Research: Space Physics, 125. https://doi.org/10.1029/2019JA027749

92. Zhang, Y., Li, X., Su, Q. Hu, X. (2017). Exploring a theme park's tourism carrying capacity: A demand-side analysis, Tourism Management, 59, 564-578.

93. Zhao, Y. (2011) GPS/IMU Integrated System for Land Vehicle Navigation based on MEMS Royal Institute of Technology (KTH), https://www.diva-portal.org/smash/get/diva2%3A446078/

94. Zulfiqar, A., Al-Shamayleh, Q.K., Akhunzada, A., Raza, A., Butt, A., Fasih, M. (2023). Delay Optimization in LoRaWAN by Employing Adaptive Scheduling Algorithm With Unsupervised Learning. IEEE Access, 1-1. https://doi.org/10.1109/ACCESS.2023.3234188

Downloads

Published

2025-12-08

Issue

Section

Original articles

How to Cite

Celiński, I., & Staniek, M. (2025). The use of LoRa technology as an alternative to GPS in the navigation of a mountain vehicle intended for people with special needs. Archives of Transport, 75(3), 159-188. https://doi.org/10.61089/aot2025.cyhvt759

Share

Similar Articles

51-60 of 95

You may also start an advanced similarity search for this article.

Improving positioning accuracy of aircraft using SPP method in GLONASS system

Kamil Krasuski, Adam Ciećko, Grzegorz Grunwald, Małgorzata Kirschenstein (Author)