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Abstract

In this paper is presented a calculation method based on Lagrange’s interpolation formula
which has been used for mathematical description of the performance characteristics of
a compression-ignition engine of the 359 type of the Polish production. Its application
allows simplification of experimental tests through preservation of a minimum number
of measuring points and estimation of other data analytically. In order to minimise
the interpolation error occurring with polynomials of high degrees and constant node
distances, the characteristics were approximated by spline functions with both solutions
being shown comparatively in the graphical form. As calculation examples, the curves
of specific fuel consumption and infrared radiation absorption coefficient were chosen,
which had been obtained during examinations on engine test bench for a drive unit
fuelled with four types of fuel. In addition, results of the experiment required for their
determination were tabulated. The presented method may be used in further tests of a
given engine as well as on other experimental benches, aiding long-lasting and expensive
optimisation of operating parameters when using fuels of plant origin. Description of
any performance characteristics by means of interval interpolation is convenient from
the practical side and does not cause greater calculation problems since polynomials of
low degrees are being used in the procedure.
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1. Introduction

Interpolation belongs to basic numerical methods which allow finding a function
in a given interval assuming a priori set values in specific points, so called nodes.
In calculation practice, it is most frequently used for the replacement of a specific
curve determined experimentally with an appropriate polynomial to reproduce fairly
exactly the course of function in the quantitative and the qualitative aspect [3]. In
case of a small number of nodes and constant distances between them, Lagrange’s
interpolation formula is being frequently used [1]:

Wn(x) = y0
(x − x1)(x − x2)...(x − xn)

(x0 − x1)...(x0 − xn)
+ y1

(x − x0)(x − x2)...(x − xn)
(x1 − x0)(x1 − x2)...(x1 − xn)

+

+... + yn
(x − x0)(x − x1)...(x − xn−1)

(xn − x0)(xn − x1)...(xn − xn−1)

(1)

where:
Wn(x) – Lagrange’s interpolation polynomial of the n-th degree,
x0, x1, x2, . . . , xn – measuring points (nodes),
y0=f(x0), y1=f(x1), y2=f(x2), . . . , yn=f(xn) – function’s values in this points.
It should be stressed, however, that increasing the number of measuring points

leads in a quick way to the complexity of calculations being performed, which results
from a high degree of the polynomial obtained. Furthermore, it does not ensure a
more exact description of the curve in question since analytically determined values
of the function outside main nodes may be encumbered with a large error and the
same do not reproduce physical aspects of the experiment. Deterioration of the
interpolation results occurs usually at the ends of the interval in question, whereas
this effect is being determined with Runge’s phenomenon [1].

Necessary condition for obtaining the correct course of performance characteris-
tic is determination of minimum six measuring points [2]. Their larger number may
be troublesome with experimental cycles repeated many times, e.g. when changing
engine adjustment settings, fuelling it with different types of fuels, interfering in
the parameters on the inlet side, etc. This is connected both with an increase in
the time consumption of research process and multiplication of operating costs. In
addition, it is recommended to concentrate measuring points near the extremes and
other places of the curves important from the point of view of experiment. With
this end in view, a calculation procedure was developed which allows analytical
estimation of other data basing on their minimum required number. Having in mind
the minimisation of errors occurring when using Lagrange’s interpolation formula
(1), the characteristics for respective fuels were described comparatively in two ways:
by interval interpolation, i.e. with the second and the third degree polynomial, and
by a single polynomial of the fifth degree.
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2. Research Methods

Test bed measurements were carried out on a standard engine test bench being
part of laboratory facilities of the Department of Automotive Vehicles Operation,
Western Pomeranian University of Technology in Szczecin. The study object was
an unsupercharged four-stroke engine of the 359 type of domestic production. It
is a six-cylinder compression-ignition drive unit with direct fuel injection system
(Table 1) [5]. The test bench was equipped additionally with hydraulic brake HWZ-3
together with a complete control system, gravimetric fuel gauge and light obscu-
ration smokemeter MDO 2 type. In respective measuring cycles, the engine was
fuelled with fuels having different physicochemical properties, i.e. summer grade
diesel oil (ON), low-sulphur diesel oil (EKODIESEL PLUS 50), rapeseed oil (OR),
and rapeseed methyl ester (RME). The obtained test results allowed determination
of a number of performance characteristics of the engine while preserving its fac-
tory settings [4]. Because the paper is focused on a mathematical description of
the characteristic curves of specific fuel consumption (ge) and infrared radiation
absorption coefficient (k), their values are compiled in Table 2 according to the
type of applied fuel.

Table 1
Base technical data of engine by 359 type [5]

Description Technical data

Arrangement of cylinders vertical, in-line

Number of cylinders 6

Cylinder diameter 0,11 m

Piston stroke 0,12 m

Engine displacement 6,846 dm3

Compression ratio 17

Maximum output 110 kW at 2800 1/min

Maximum torque 432 Nm at 1800÷2100 1/min

Minimal specific fuel consumption 223 g/kWh

Firing sequence 1-5-3-6-2-4

Delivery angle (static)
18,5 degrees of crankshaft rotation before
upper dead center (U.D.C.)

Injection system direct

3. Calculation Methods

During the examinations, readings were made in six measuring points, with [1/s]
being adopted as a unit of engine crankshaft rotational speed due to the simplification
of calculation procedure. In this connection, the following nodes with constant



352 Tomasz Stoeck, Konrad Prajwowski

Table 2
The values of specific fuel consumption and exhaust gas smokiness for the examined fuels

n [1/min]
ge [g/kWh] k [1/m]

ON EKODIESEL PLUS 50 OR RME ON EKODIESEL PLUS 50 OR RME

1200 222,83 225,68 269,29 251,44 1,57 1,83 0,82 0,88

1500 227,56 221,84 271,71 249,97 1,78 2,05 1,01 1,09

1800 219,40 219,86 268,60 245,09 0,76 0,81 0,64 0,67

2100 226,59 224,77 273,53 248,21 0,85 0,78 0,46 0,49

2400 231,48 229,97 277,80 252,63 0,83 0,81 0,35 0,41

2700 238,22 234,06 286,27 264,03 0,88 0,84 0,32 0,44

distances of arguments were obtained: x0=20, x1=25, x2=30, x3=35, x4=40, and
x5=45. According to formula (1), a general equation of the function describing any
external characteristic of the engine under examination may be presented as follows:

D(x) =
5∑

k=0

f (xk) · dk(x) (2)

where:
dk(x) =

(x − x0)...(x − xk−1)(x − xk+1)...(x − x5)
(xk − x0)...(xk − xk−1)(xk − xk+1)...(xk − x5)

(3)

The above expressions are correct when applying a single Lagrange’s polynomial
of the fifth degree for {k=0, 1, 2, 3, 4, 5}. Interpolation with spline functions forces
division of the area in question into smaller parts hence calculations were per-
formed separately for two intervals. By substituting measuring points and reducing
successive to a common denominator, the following was obtained:

d0(x) =
(x − 25)(x − 30)

(−5)(−10)
=

15 · S0(x)
750

(4)

d1(x) =
(x − 20)(x − 30)

(5)(−5)
=
−30 · S1(x)

750
(5)

d2a(x) =
(x − 20)(x − 25)

(10)(5)
=

15 · S2a(x)
750

(6)

as well as:
d2b(x) =

(x − 35)(x − 40)(x − 45)
(−5)(−10)(−15)

=
−S2b(x)

750
(7)

d3(x) =
(x − 30)(x − 40)(x − 45)

(5)(−5)(−10)
=

3 · S3(x)
750

(8)

d4(x) =
(x − 30)(x − 35)(x − 45)

(10)(5)(−5)
=
−3 · S4(x)

750
(9)
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d5(x) =
(x − 30)(x − 35)(x − 40)

(15)(10)(5)
=

S5(x)
750

(10)

where:
S0(x). . . S5(x) – has define the working function (partial), which necessary for

calculation of final interpolation polynomials, and obtained their by multiplication
of numerators of several definition d0(x). . . d5(x).

Therefore, a general equation of the function describing the performance char-
acteristic of the engine may be presented as follows:

D1(x) = f (x0) · d0(x) + f (x1) · d1(x) + f (x2) · d2a(x) (11)

D2(x) = f (x2) · d2b(x) + f (x3) · d3(x) + f (x4) · d4(x) + f (x5) · d5(x) (12)

As a calculation example, specific fuel consumption curve obtained when fuelling
the engine with traditional summer grade diesel oil (ON) was chosen for examina-
tion. Having in mind the values presented in Table 1, functions DON1(x) and DON2(x)
describing a given performance characteristic curve will have the following form:

DON1(x) = (1/750)[3342, 45 · S0(x) − 6826, 80 · S1(x) + 3291, 00 · S2a(x)]

DON2(x) = (1/750)[−219, 40 ·S2b(x)+679, 77 ·S3(x)−694, 44 ·S4(x)+238, 22 ·S5(x)]

In order to present final Lagrange’s interpolation polynomials, its respective com-
ponents were determined:

S0(x) = x2 − 55x + 750 (13)

S1(x) = x2 − 50x + 600 (14)

S2a(x) = x2 − 45x + 500 (15)

as well as:
S2b(x) = x3 − 120x2 + 4775x − 63000 (16)

S3(x) = x3 − 115x2 + 4350x − 54000 (17)

S4(x) = x3 − 110x2 + 3975x − 47250 (18)

S5(x) = x3 − 105x2 + 3650x − 42000 (19)

Finally, the spline functions describing the performance characteristic of specific
fuel consumption when fuelling the engine with summer grade diesel oil (ON)
assume the following form:

DON1(x) = (1/750)[−193, 35x2 + 9410, 25x − 56257, 50]

DON2(x) = (1/750)[4, 15x3 − 470, 25x2 + 18468, 50x − 78330, 00]
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Interpolation polynomials of other curves were determined in a similar way, whereas
their cumulative comparison and graphical interpretation are presented in Table 3
and Figure 1, respectively. For comparison, also fifth degree functions obtained
without division of the area in question into two parts are presented. Because all
tests were carried out for identical measuring points, there is possibility of a direct
use of the calculation procedure for description of other performance characteristics
of a given type engine. This is because the form of polynomials of components
(13), (14), (15), (16), (17), (18) and (19) remains unchanged, while determination
of the functions for other operating parameters is only limited to the replacement and
multiplication of applied gradients in the formula (2). An example can be interpo-
lating polynomials of exhaust gas smokiness curves, being expressed by absorption
coefficient of infrared radiation (Figure 2, Table 4).

Table 3
Interpolation of the cumulative performance characteristic of specific fuel consumption

Fuel Form of interpolating polynomials

ON
DON1(x) = (1/750)[−193, 35x2 + 9410, 25x − 56257, 50]

DON2(x) = (1/750)[4, 15x3 − 470, 25x2 + 18468, 50x − 78330, 00]
DON (x) = (1/375000)[67, 69x5 − 11300, 75x4 + 741066, 25x3−
−23804406, 25x2 + 373788662, 00x − 2207467500, 00]

EKODIESEL PLUS 50
DEP1(x) = (1/750)[27, 90x2 − 1831, 50x − 194730, 00]

DEP2(x) = (1/750)[−1, 40x3 + 151, 35x2 − 4656, 25x + 206167, 50]
DEP(x) = (1/375000)[16, 83x5 − 2815, 25x4 + 183863, 25x3−
−5830543, 70x2 + 89447762, 00x − 446433750, 00]

OR
DOR1(x) = (1/750)[−82, 95x2 + 4095, 75x − 153232, 50]

DOR2(x) = (1/750)[4, 86x3 − 520, 20x2 + 19122, 00x − 35250, 00]
DOR(x) = (1/375000)[35, 83x5 − 5931, 25x4 + 386018, 75x3−
−12312818, 70x2 + 192109387, 00x − 1069882500, 00]

RME
DRME1(x) = (1/750)[−51, 15x2 + 2076, 25x + 167415, 00]

DRME2(x) = (1/750)[5, 68x3 − 576, 90x2 + 19932, 50x − 48307, 50]
DRME(x) = (1/375000)[30, 49x5 − 5026, 25x4 + 326106, 25x3−
−10368793, 70x2 + 160972037, 00x − 879851250, 00]

Experimental verification of both cases in question showed that better approx-
imation was obtained when using interval interpolation, i.e. with polynomials of
the second and the third degree. For example, when fuelling the engine with low-
sulphur diesel oil (EKODIESEL PLUS 50), the level of exhaust gas smokiness
at intermediate point xi=22.5 1/s amounted to 2.04 1/m which gives, in relation
to the value calculated with spline function method 2.13 1/m, an error of 4.41%.
Deterioration of the results of interpolation with a single polynomial is significant
since the largest deviation 25.98% was obtained at a result of 2.57 1/m. For other
curves, errors are not so large whereas the course of most of them has almost
identical character, which is particularly visible for the functions describing specific
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Fig. 1. Graphical interpretation of the interpolating polynomials of specific fuel consumption

Fig. 2. Graphical interpretation of the interpolating polynomials of exhaust gas smokiness
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fuel consumption (Figure 1). Nonetheless, it is possible to observe their increase at
the ends of the analysed interval on both diagrams. This confirms the occurrence
of so called Runge’s effect for polynomials of the fifth degree with constant node
distances and the appearance of extremes in interpolating functions. In such a case,
better results may be obtained by applying so called spline functions, dividing the
examined interval into smaller partitions.

Table 4
Interpolation of the cumulative performance characteristic of exhaust gas smokiness

Fuel Form of interpolating polynomials

ON
DON1(x) = (1/750)[−18, 45x2 + 861, 75x − 8677, 50]

DON2(x) = (1/750)[0, 18x3 − 20, 55x2 + 777, 75x − 9127, 50]
DON (x) = (1/375000)[4, 96x5 − 833, 00x4 + 54980, 00x3−
−1778650, 00x2 + 28119525, 00x − 172773750, 00]

EKODIESEL PLUS 50
DEP1(x) = (1/750)[−21, 55x2 + 1003, 00x − 10062, 50]

DEP2(x) = (1/750)[−0, 06x3 + 7, 20x2 − 282, 00x + 4207, 50]
DEP(x) = (1/375000)[4, 91x5 − 832, 00x4 + 55416, 25x3−
−1808900, 00x2 + 28835775, 00x − 178391250, 00]

OR
DOR1(x) = (1/750)[−8, 40x2 + 406, 50x − 4155, 00]
DOR2(x) = (1/750)[0, 01x3 − 58, 75x + 1972, 50]

DOR(x) = (1/375000)[x5 − 171, 75x4 + 11642, 50x3−
−388406, 25x2 + 6346562, 50x − 40121250, 00]

RME
DRME1(x) = (1/750)[−9, 45x2 + 456, 75x − 4695, 00]

DRME2(x) = (1/750)[0, 01x3 + 0, 45x2 − 88, 00x + 2467, 50]
DRME(x) = (1/375000)[1, 16x5 − 199, 25x4 + 13507, 50x3−

−450493, 75x2 + 7356212, 50x − 46488750, 00]

4. Conclusions

The use of the calculation method presented allows simple description of any
performance characteristic of a given engine as well as, after small modification,
other drive units in tests with a similar profile. Its application allows simplification
of experimental procedure since estimation of the values for rotational speeds not
being interpolation nodes may be carried out analytically. It should be stressed,
however, that more favourable results are being obtained through interpolation with
spline functions, dividing the area in question into smaller parts. Owing to low
polynomials of low degrees, calculations do not present greater problems and they
can be carried out without complex algorithms, obtaining a satisfactory degree of
approximation. Furthermore, oscillation of single interpolating functions is avoided
at the extremes of the interval under examination, which falsify the physical aspect
of experiment.
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