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Abstract:

Accurate and timely prediction of the urban traffic congestion index (TCI) is crucial for implementing proactive traffic
management and alleviating urban congestion. To address the limitations of single models in capturing both complex
temporal dependencies and high-dimensional feature interactions, this paper proposes a novel hybrid prediction
framework that synergistically integrates a Long Short-Term Memory (LSTM) network and a Light Gradient Boosting
Machine (LightGBM). The model is designed to perform dual-stream learning: the LSTM module extracts medium-
and long-term temporal patterns from historical TCI sequences, while the LightGBM module concurrently learns
discriminative feature representations from the structured traffic data. A genetic algorithm (GA) is employed to opti-
mize the fusion weights of the two components, constructing an adaptive and cohesive LightGBM-LSTM prediction
model. The proposed framework was validated using real-world TCI data collected from three representative segments
with varying congestion levels (mild, moderate, and severe) on Chengdu’s Third Ring Road, covering a period from
September to October 2024. The experimental results demonstrate that the hybrid model significantly outperforms
both standalone LSTM and LightGBM baselines across all test scenarios. Specifically, it achieved accuracy improve-
ments of 4.87% and 33.06% in mildly congested sections, 26.80% and 22.32% in moderately congested sections, and
47.87% and 10.47% in severely congested sections, respectively, measured by the Mean Absolute Percentage Error
(MAPE). These findings confirm that the proposed GA-optimized LightGBM-LSTM hybrid model effectively enhances
TCI prediction precision and robustness by leveraging complementary strengths of sequence learning and feature
engineering. The study provides a reliable and efficient analytical tool for short-term traffic state forecasting, offering
valuable support for the development of data-driven and refined urban traffic management strategies.
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1. Introduction

The rapid pace of urbanization worldwide has
placed unprecedented strain on urban transportation
networks, leading to severe traffic congestion that
undermines economic efficiency, environmental
sustainability, and quality of life. In China, the chal-
lenge is particularly acute, with motor vehicle own-
ership exceeding 453 million and continuing to grow
(Ministry of Public Security of the People’s Repub-
lic of China, 2025,01,18). To manage this complex-
ity, cities like Beijing and Shenzhen have adopted
macro-level indicators such as the Traffic Conges-
tion Index (TCI) to quantitatively evaluate and mon-
itor network-wide performance. Accurate, short-
term prediction of the TCI is therefore a critical task
for enabling proactive traffic management and
providing reliable traveler information.

In recent years, the rapid advancement of machine
learning has provided powerful tools for processing
large-scale, complex nonlinear datasets. Further-
more, deep learning, as an advanced extension of
machine learning, offers enhanced capability in un-
covering underlying patterns and logical relation-
ships embedded in such data(Shi et al., 2020). While
significant progress has been made in traffic fore-
casting—evolving from statistical models to ad-
vanced machine learning and deep learning tech-
niques—achieving high accuracy for a complex,
macro-level index like the TCI remains challenging.
Standalone models, including the powerful Long
Short-Term Memory (LSTM) network for temporal
sequences and the efficient Light Gradient Boosting
Machine (LightGBM) for feature-based learning,
exhibit complementary strengths but also inherent
limitations. LSTM models may overlook critical
feature interactions, while LightGBM models often
fail to fully capture complex temporal dependencies.
Although hybrid models that combine different ar-
chitectures have shown promise, most existing ap-
proaches have not deeply integrated the distinct,
complementary advantages of tree-based ensembles
and recurrent neural networks into a cohesive, opti-
mally weighted framework.

To bridge this gap, this paper proposes a novel hy-
brid LightGBM-LSTM model for the precise predic-
tion of the urban Traffic Congestion Index. The core
innovation lies in the synergistic fusion of two com-
ponents: the LightGBM module extracts high-level,
discriminative features from the historical data,

while the LSTM module learns the underlying me-
dium- and long-term temporal dynamics. A genetic
algorithm is employed to optimize the weight coef-
ficients for integrating the outputs of these two com-
ponents, creating a unified and robust prediction
model. The primary contributions of this work are
threefold:

1. We propose a novel hybrid forecasting archi-
tecture that deeply integrates LightGBM and
LSTM to simultaneously leverage feature inter-
actions and sequential patterns.

2. We introduce a genetic algorithm-based opti-
mization strategy to determine the optimal fu-
sion weights between the two model compo-
nents, enhancing overall predictive perfor-
mance.

3. We validate the proposed model using real-
world TCI data from a major Chinese city,
demonstrating its superiority over several
standalone and benchmark hybrid models
through comprehensive experiments.

The remainder of this paper is organized as follows:

Section 2 provides a structured review of related

work. Section 3 details the proposed LightGBM-

LSTM methodology. Section 4 presents the experi-

mental setup, results, and discussion. Finally, Sec-

tion 5 concludes the paper and suggests directions
for future research.

2. Literature Review

Accurate traffic prediction is fundamental for intel-
ligent transportation systems. Recent research has
evolved from traditional statistical methods to so-
phisticated machine learning and hybrid approaches.
This section reviews these methodological advance-
ments with a focus on their application to traffic
forecasting, culminating in the identification of the
specific research gap addressed by this study.

2.1. Evolution of Traffic Prediction Methodolo-
gies
Early traffic prediction heavily relied on statistical
time-series models, such as historical averages(An-
itha et al., 2019), the Autoregressive Integrated
Moving Average (ARIMA) (Dissanayake et al.,
2021), Hidden Markov(Zhao et al., 2019). While
computationally efficient, these parametric models
often struggle with the non-linear and non-stationary
nature of real-world traffic data, leading to limited
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accuracy. The advent of machine learning intro-
duced more flexible non-parametric models. How-
ever, shallow neural networks and support vector
machines can be insufficient for capturing the com-
plex, high-dimensional patterns in large-scale traffic
datasets(Kuang et al., 2020).

The breakthrough came with deep learning, which
excels at automatic feature extraction from raw data.
In particular, Recurrent Neural Networks (RNNs)
are naturally suited for sequential data. To over-
comethe vanishing gradient problem in standard
RNNs, the Long Short-Term Memory (LSTM) net-
work was introduced (Hochreiter et al., 1997) and
has since become a cornerstone for time-series fore-
casting. Its suitability for time-series traffic data has
been demonstrated in various prediction applica-
tions. For example, Wang et al.(Ma et al., 2015)were
among the first to introduce LSTM into traffic speed
prediction, noting its advantages in handling non-
linear patterns and long-term dependencies. Subse-
quent studies by Zhong et al.(Zhong et al., 2018).
Deep learning (DL) Neural Network (NN) ap-
proaches have been proven to extract temporal fea-
tures from time series data, including Convolutional
Neural Networks and Recurrent Neural Net-
works(Zhang et al., 2023). Approaches using DL al-
gorithms have been focused on short-term traffic
flow prediction(Gu et al., 2019).

LightGBM (Light Gradient Boosting Machine) is a
training algorithm based on Gradient Boosting De-
cision Tree (GBDT), characterized by fast training
speed, low memory consumption, and high predic-
tion accuracy(Alafate et al., 2019).While GBDT
struggles with maintaining accuracy and efficiency
at large data scales(Kadiyala et al, 2018),
LightGBM achieves significant improvements in
training efficiency, memory usage, and scalability.
It can directly process categorical features while ef-
fectively avoiding dimensionality explosion.

While deep learning models have improved traffic
prediction accuracy, their growing complexity in-
creases computational cost and tuning difficulty(Ku-
mar et al., 2024). High-dimensional spatiotemporal
data further exacerbates this optimization challenge.
Although LightGBM has shown strong potential in
time-series forecasting due to its efficiency, its deep
integration for traffic congestion index prediction re-
mains under-explored(F. Li et al., 2024).

2.2. Hybrid Models for Enhanced Traffic Fore-
casting
Platforms such as Baidu and Gaud provide conges-
tion index to guide travel. However, the existence of
a delay makes it unrealistic to avoid congestion in
advance. Thus, it’s really important to predict the
congestion index in real-time.
The limitation of collection technology results in a
lack of traffic characteristics, which leads to predic-
tion errors. To solve this problem, it can be consid-
ered to enhance and generate features based on the
original dataset. Yang Zhao et al.(Yang et al., 2021)
reported a hybrid LSTM-GCN model with three-
way temporal features (SCLN-TTF), leveraging
Long Short-Term Memory Network(LSTM) to ex-
tract temporal features, and graph convolutional
neural networks to extract spatial features; He et
al.(He et al., 2021) introduced a technique for pre-
diction based on trees and deep learning (DL). The
essay described a means of feature generation,
which is of great significance for feature extraction
and generation. In a word, deep learning and tree-
based theory can infer new features with limited fea-
tures in the dataset, and have the ability to create fea-
tures. In(L. Li et al.,, 2020), the LSTM-SPRVM
model and the fuzzy comprehensive evaluation-
based method were leveraged to predict and rank the
congestion, and a traffic congestion prediction and
visualization framework based on machine learning
and a fuzzy comprehensive evaluation-MF-TCPV
was proposed. Note that the framework can visually
observe the results of congestion prediction, and the
accuracy is also preferable.
With the increasing availability of large-scale da-
tasets, research in traffic congestion prediction has
progressively shifted towards deep learning method-
ologies(Cheng et al., 2022). Proposed hybrid models
in the literature(Chu et al., 2020) demonstrate that
these approaches yield substantial enhancements in
prediction accuracy compared to conventional meth-
ods.

2.3. Identified Research Gap and Contribution

By synthesizing the literature reviewed above, a pro-
gressive trend is evident: research has evolved from
standalone models to hybrid frameworks that at-
tempt to combine algorithmic strengths. However,
critical limitations persist: (1) Tree-based models
(e.g., LightGBM) excel at feature learning but often
neglect temporal dynamics when used in isolation in
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traffic studies(N. Li et al., 2023); (2) Deep sequence
models (e.g., LSTM) capture temporal patterns but
may underutilize the powerful feature representation
capabilities of tree ensembles(Cheng et al., 2022);
(3) Most existing hybrids lack a principled and opti-
mized mechanism to fuse these fundamentally dif-
ferent model families into a cohesive predictive en-
gine(Cao et al., 2021).

This paper is motivated by the circumstance that the
complementary strengths of LightGBM and LSTM
have not been fully exploited within a unified frame-
work for traffic prediction. Specifically, the question
of how to optimally integrate feature-based learning
with temporal sequence modeling to achieve supe-
rior prediction performance remains open.

To address these gaps and achieve more accurate
and robust traffic congestion index (TCI) prediction,
this study proposes a novel hybrid LightGBM-
LSTM model. The model is designed to perform
dual-stream learning: the LightGBM component ex-
tracts high-level discriminative features from histor-
ical and contextual data, while the LSTM compo-
nent captures complex medium- and long-term tem-
poral dependencies. Furthermore, a genetic algo-
rithm is employed to optimize the fusion weights,
ensuring an adaptive and effective integration of
both components' outputs.

3. Methodology and Data
3.1. Definition of Traffic Congestion Index Pre-
diction

The problem of traffic congestion prediction can be
defined as forecasting future congestion conditions
based on historical traffic data. To quantify the se-
verity of congestion, the concept of the Traffic Con-
gestion Index (TCI, also referred to as the Traffic In-
dex or Traffic Performance Index) has been introdu-
ced. The TCI is a comprehensive metric whose va-
lues correspond to different levels of service, ran-
ging from free-flow conditions to various degrees of
congestion. A higher index value indicates more se-
vere traffic congestion. This indicator provides an
intuitive reflection and description of the operational
status of urban roads or road networks (Specifica-
tions for urban traffic performance evaluation,
2016)

The Traffic Congestion Index reflects both the aver-
age travel speed on roads in a specific area and the
public’s perception of traffic congestion conditions.
Compared to traditional traffic parameter indicators,

it offers greater intuitiveness and clarity. When se-
lecting parameters for constructing such an index, it
is essential to ensure that the data is readily obtaina-
ble. In addition to conventional data collection tech-
niques, leveraging open data sources—such as
Amap, Baidu Maps, and related platforms—is
highly recommended. This approach helps alleviate
the challenges associated with limited data acquisi-
tion capabilities and facilitates more efficient and
scalable traffic monitoring(Cheng et al., 2022).
Therefore, this study adopts the Traffic Congestion
Index provided by the Baidu Map Traffic Infor-
mation Release and Analysis Platform as the foun-
dational data metric for classifying traffic opera-
tional characteristics and predicting road traffic con-
ditions.

The conversion formula between the Baidu Real-
time Congestion Index and other traffic evaluation
metrics is presented in Equation (1):

TPI = F(TTR) (D

Where TPI denotes the Traffic Performance Index,
and TTR represents the Travel Time Ratio. The cal-
culation formula for TTR is given in Equation (2).

TTR = B 2
4

Where Ek]- denotes the average time taken for vehi-
cles to traverse road segment j during time interval
k, and, Ek]-represents the travel time under free-flow
conditions on the same segment. The classification
of traffic states according to the Baidu Map Smart
Transportation Platform is summarized in Table 1.

Table 1. Traffic State Classification Criteria on the
Baidu Platform

Average  Traffic Perfor- Traffic
Traffic State Speed mance Index State
(km/h) (TPD Level
Smooth V=44 TPI<1.5 1
Congested ~ 33<V<44 1.5<TPIL2 2
Heavy 16<V<33 2<TPI<4 3
Congestion
Severe V<16 TPI>4 4
Congestion
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3.2. The Proposed LightGBM-LSTM Hybrid
Model

For traffic congestion index prediction, a hybrid

LightGBM-LSTM prediction model is constructed,

which consists of three core components: an LSTM

module, a LightGBM module, and an integration

module.

3.2.1. LSTM Module

The Long Short-Term Memory (LSTM) model is a
special type of recurrent neural network (RNN) spe-
cifically designed to address the gradient vanishing
and explosion problems commonly encountered in
traditional RNNs when processing long sequence
data. Its core innovation lies in the use of gating
mechanisms and a cell state to achieve long-term
memory retention and dynamic control of infor-
mation flow. Building upon the traditional RNN
structure, the LSTM introduces a cell state and three
gating mechanisms: The Forget Gate determines
which information from the previous time step
should be discarded. The Input Gate controls
whether new information from the current input
should be stored. The Output Gate regulates the
amount of information output from the current cell
state.

Through these gating mechanisms, the LSTM selec-
tively forgets and updates information, effectively
mitigating the gradient-related issues of traditional
RNNs and significantly enhancing modeling capa-
bility for time series data. The cell state acts as a con-
tinuous information pathway throughout all time
steps, functioning like a "conveyor belt" that stores
and transfers long-term memory. The internal struc-
ture of the LSTM cell is illustrated in Figure 1.
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Fig. 1. Schematic Diagram of the Memory Cell
Structure
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The specific procedural steps of the LSTM algo-
rithm are illustrated in Figure 2. In this process, the
Epoch controls the overall number of training cy-
cles, determining the depth of the model’s learning
from the data. The Iteration determines the fre-
quency of parameter updates within each epoch, in-
fluencing both training stability and convergence
speed. Through multiple epochs of training and con-
tinuous parameter optimization during each itera-
tion, the model progressively reduces prediction er-
rors and enhances overall performance.

Start
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LSTM
Network
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.

the loss function
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L Epoch=epoch+1 |«N. Completion

Predicted Sequence
Output

Error Metric
Calculation

Fig. 2. Detailed Flowchart of the LSTM Algorithm

Owing to its unique memory structure, the LSTM
model demonstrates significant advantages in the
field of time series prediction, making it particularly
suitable for scenarios such as traffic congestion in-
dex forecasting, which exhibits strong temporal de-
pendencies and complex dynamic characteristics.
Through the synergistic action of the cell state and
gating mechanisms, the LSTM effectively captures
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long-term patterns (e.g., periodic morning and even-
ing peaks) and short-term fluctuations (e.g., impacts
of unexpected incidents) in traffic data, while also
mitigating the vanishing gradient problem com-
monly encountered in traditional recurrent neural
networks.

3.2.2. LightGBM Module

The LightGBM algorithm is an efficient, optimized

version of GBDT (Gradient Boosting Decision

Tree). It incorporates several advanced techniques,

including:

—  Histogram-based Algorithm: Accelerates train-
ing by bucketing continuous features into dis-
crete bins.

—  Gradient-based One-Side Sampling (GOSS):
Retains samples with large gradients and ran-
domly discards those with small gradients to re-
duce data size.

—  Exclusive Feature Bundling (EFB): Bundles
mutually exclusive sparse features to reduce di-
mensionality.

—  Leaf-wise Growth Strategy: Splits the leaf with
maximum gain at each step, creating deeper
trees for lower loss.

Additionally, LightGBM natively supports categor-

ical features and feature parallelism, significantly

enhancing efficiency and performance while reduc-
ing memory consumption. The overall workflow is

illustrated in Figure 3.

3.3. Integration with Genetic Algorithm

By integrating multiple highly accurate prediction
models, it is possible to leverage the strengths of
each model while mitigating their individual limita-
tions, thereby enhancing overall predictive perfor-
mance. To address the shortcomings of single-model
approaches, this study adopts an LSTM-LightGBM
hybrid model that combines LSTM’s capability to
capture temporal trends with LightGBM’s profi-
ciency in processing historical features. This fusion
leverages the advantages of both methods to im-
prove the accuracy of short-term traffic congestion
index forecasting.

Specifically, the hybrid model employs a linear
weighting mechanism for integration, with optimal
weight coefficients determined using a genetic algo-
rithm. The mathematical formulation of the com-
bined model is given by Equation (3):

feom = WafLightaem + WafisTm (3)

where:

w; denotes the weight coefficient for the LightGBM
model,

w, denotes the weight coefficient for the LSTM
model,

and the weights satisfy the constraint:w; +w,=1.
The Genetic Algorithm (GA) is a global optimiza-
tion method inspired by natural selection and genetic
mechanisms, widely applied to solve complex prob-
lems—especially those that are nonlinear, multi-
modal, or combinatorial in nature. Drawing on prin-
ciples from biological evolution, GA effectively ex-
plores complex search spaces by simulating genetic
operations such as selection, crossover, and muta-
tion.

Start

Setting Initial
Parameters for
LightGBM

Training Dataset H Lig"f]l%ir]lsin ltf[l(e)del }47

] N Testing the
‘ Test Dataset H LightGBM Model

Iteration Count
N‘% +1

Requirements
atisfied
Y

Optimization Result
Evaluation Metrics
Calculation

Fig. 3. Overall Workflow Diagram of the LightGBM
Algorithm

Therefore, the optimal weight coefficients for the
hybrid model can be determined using a genetic al-
gorithm. The specific steps of the optimization pro-
cess are summarized in Table 2.
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Table 2. Steps for Calculating Optimal Weight Coefficients Using Genetic Algorithm

Step Name Description
1 Population Randomly initialize multiple individuals, each representing a weight combination(w1,w2),
Initialization  satisfying wl+w2=1
) Fitness Compute the combined prediction result fcom = W1 fLignegem + Wafrsrm> and use the Mean
Calculation  Squared Error (MSE) as the fitness value.
3 Selection Apply roulette wheel selection based on fitness values to choose superior individuals for the
next generation.
Perform simulated binary crossover on selected individuals to generate new weight combina-
4 Crossover .
tions.
5 Mutation Apply Gaussian mutation to a subset of individuals to increase diversity and avoid local op-
tima.
6 Termination  Stop evolution when the maximum number of generations (e.g., 100) is reached or the error

Condition

converges (e.g., change<threshold for 10 consecutive generations).

Extraction

Optimal Weight Select the individual with the highest fitness as the optimal weight combination (w1*, w2*)
for the final LSTM-LightGBM hybrid prediction.

3.4. Data Preparation and Experimental Setup
3.4.1. Data Preparation
Currently, numerous online map platforms leverage
internet technology and big data analytics to deeply
mine and process massive amounts of travel and lo-
cation data, providing the public with real-time traf-
fic information. For example, platforms such as
Baidu Map Smart Transportation and Amap (Gaode
Map) update every five minutes, displaying infor-
mation about the top ten most congested road seg-
ments. The details include road names, congestion
delay index, travel speed, travel time, and delay du-
ration, among other metrics.(Hochreiter et al., 1997)
This study utilizes traffic congestion index data from
the Baidu Map Smart Transportation Analysis Plat-
form for representative segments of Chengdu’s
Third Ring Road:
—  Severely Congested Area: Western Third Ring
Road, Section 3
—  Moderately Congested Area: Southern Third
Ring Road, Section 4
— Mildly Congested Area: Eastern Third Ring
Road, Section 1
Based on this data, machine learning models are
constructed to predict the traffic operational status.
The experimental dataset consists of traffic conges-
tion index values collected from September 1, 2024,
to October 12, 2024(a sample is shown in Table 3).
The dataset is divided as follows:
—  Training set: The first 80% of the data.
—  Validation set: The subsequent 20% of the data.

—  Test set: Data from October 13, 2024(reserved
for final evaluation).

The prediction task covers a full 24-hour period with

a time granularity of 3 minutes.

Input Features

The model input includes the following features to

capture spatiotemporal patterns:

1) Road Segment Identifier: Specific road seg-
ment (e.g., Western Third Ring Road Section
3).

2) Congestion Level: Severe, moderate, or mild.

3) Historical Traffic Data: Historical traffic con-
gestion index values.

4) Temporal Context:

—  Month and day of the week.

—  Time period within the day (defined below).

— Binary indicator for weekends or public holi-
days.

Definition of Time Periods (Peak/Off-Peak Hours)

—  Weekday Morning Peak:7:00-9:00

—  Weekday Evening Peak:17:00-19:00

—  Weekend/Holiday Morning Peak:10:00—12:00

—  Weekend/Holiday Evening Peak:16:00—18:00

—  Off-Peak Hours: All other time periods

This structured input enables the model to capture

complex spatiotemporal patterns and contextual fac-

tors affecting traffic congestion. Subsequently, an

empirical simulation is conducted to visually com-

pare the model’s predictions with actual observed

values.
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Table 3. Example of Traffic Congestion Index Data for Sections of Chengdu’s Third Ring Road

. Road Length Congestion  Avg Speed Congested

Date Time Road Name (km) i Inde%( (kngl/hg Lenggth (km)

2024/9/29 8:24:00 5.678 1.832 45.43 0.052
2024/9/29 8:27:00 5.678 2.06 40.402 0.258
2024/9/29 8:30:00 5.678 2.105 39.538 0.412
2024/9/29 8:33:00 5.678 2.148 38.747 0.465
2024/9/29 8:36:00 Southern Third Ring 5.678 2.06 40.402 0.315
2024/9/29 8:39:00 Road. Section 4 5.678 2.203 37.779 0.446
2024/9/29 8:42:00 ? 5.678 2.247 37.04 0.494
2024/9/29 8:45:00 5.678 2.258 36.859 0.515
2024/9/29 8:48:00 5.678 2.352 35.386 0.663
2024/9/29 8:51:00 5.678 2.419 34.406 0.767
2024/9/29 8:54:00 5.678 2.43 34.25 0.776

3.4.2. Evaluation Metrics

This study employs the Mean Absolute Percentage
Error (MAPE) and the Root Mean Square Error
(RMSE) as evaluation metrics. Among them, MAPE
is an error metric commonly used in regression
tasks, representing the proportion of prediction error
relative to the true value. A smaller MAPE value in-
dicates smaller model error and higher prediction ac-
curacy. Its mathematical expression is shown in
Equation (4):

n
1000/2 9 — v

MAPE = 0 |9: — il &)
noe v

where:

y; denotes the predicted value of the i-th sample,
y;denotes the actual value of the i-th sample,

n represents the total number of samples.
Meanwhile, RMSE serves as the fitness criterion,
where a smaller value indicates better adaptability of
an individual to the environment. Its mathematical
expression is given by Equation (5):

n
1
RMSE = NZ(100yi — 100y;)? Q)
i=1

where:

v, represents the predicted value of the i-th sample,
y; represents the actual value of the i-th sample,

N denotes the total number of samples.

To ensure the reproducibility of the experiments and
to provide context for the computational efficiency
discussed later, the hardware and software configu-
rations used for model training and evaluation in this
study are detailed in Table 4.

Table 4. Experimental Environment Configuration
Item oS CPU RAM IDE
Specifi- Win- AMD
cation dowsl0 Ryzen5

Storage

8GB VSCode 128GB

4. Result Analysis and Performance Compari-
son
4.1. Analysis of Single Model Results
To preliminarily and intuitively assess the predictive
capability of our proposed hybrid model, we first
present a visual comparison between the predicted
and the actual observed traffic congestion index
(TCI) over a continuous time series. Figure 4-6 il-
lustrates this comparison for a selected test period,
allowing for an initial observation of how closely the
model’s output follows the real traffic fluctuations.
(1) Eastern Third Ring Road, Section 1
As shown in the prediction visualization in Figure 4,
the predicted values from the LSTM model (red
dashed line) align more closely with the true values
(blue curve). Particularly during morning and even-
ing peak hours, the LSTM demonstrates a stronger
capability to capture abrupt changes in the traffic in-
dex. In contrast, the predictions from LightGBM
(green dotted curve) exhibit an overall smoother
trend. Although LightGBM shows some deviations
at peak points, it still maintains a reasonable fit to
the overall trend of the ground truth data.
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(2) Southern Third Ring Road, Section 4 (Moder-
ately Congested Area)

As observed in the prediction visualization of Figure
5, the predicted values from the LSTM model (red
dashed line) demonstrate a strong alignment with the
ground truth (blue curve). The model effectively
captures the rapid upward trends in traffic conges-
tion during both morning and evening peak hours,
despite slight overestimation during certain inter-
vals, such as multiple spikes in the evening peak.
Overall, the prediction trend closely matches the ac-
tual data.

In contrast, the predictions generated by the
LightGBM model (green dotted line) exhibit notice-
able lag during peak periods, leading to underesti-
mation of congestion levels in some high-traffic in-
tervals. Additionally, its predictions during off-peak
hours (e.g., 0:00-6:00) display minor fluctuations
and occasional overestimation in stable periods, in-
dicating inconsistent performance across varying
traffic conditions.

(3) Western Third Ring Road, Section 3 (Severely
Congested Area)

As can be seen from Figure 6, the predicted values
of the LSTM model (red dashed line) accurately cap-
ture multiple traffic peaks, demonstrating particu-
larly strong performance during morning and even-
ing rush hours. The overall prediction trend remains
stable throughout the day without significant abnor-
mal fluctuations, although slight overshooting
(overestimation) occurs in certain localized seg-
ments.

In contrast, the predictions of the LightGBM model
(green dotted line) exhibit noticeable lag during
peak periods and generally underestimate peak val-
ues. This indicates LightGBM’s limited ability to
model abrupt changes under severe congestion con-
ditions. Additionally, anomalous jumps appear dur-
ing some off-peak intervals, primarily due to its dif-
ficulty in capturing complex nonlinear temporal de-
pendencies.
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Fig. 4. Visualization of LightGBM and LSTM Predictions in Mildly Congested Sections
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Fig. 5. Visualization of LightGBM and LSTM Predictions in Moderately Congested Sections
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Fig. 6. Visualization of LightGBM and LSTM Predictions in Severely Congested Sections

Table 5. Mean Absolute Percentage Error (MAPE)
Across Different Congestion Levels (%)

Congestion Type LSTM LightGBM
Eastern Ring Rd Secl
(Mild) 4.80 6.82
Southern Ring Rd Sec4
(Moderate) 487 4.59
Western Ring Rd Sec3 3.09 471
(Severe)

Using MAPE as the evaluation metric, the predictive
performance of the LightGBM and LSTM models
for traffic congestion index across different types of
road segments is compared in Table 5. The follow-
ing observations can be made:

In the Eastern Third Ring Road, Section 1 (mild con-
gestion), the error of LSTM is 4.80%, significantly
lower than LightGBM's 6.82%. This indicates that
LSTM is more effective at capturing overall trends
and slight fluctuations, particularly excelling in ac-
curately predicting minor variations during peak and
off-peak hours. LightGBM, in contrast, shows
higher error in this scenario, likely due to its limited
ability to model subtle nonlinear variations in mild
congestion conditions.

In the Southern Third Ring Road, Section 4 (moder-
ate congestion), the prediction errors of both models
are relatively close, with LSTM at 4.87% and
LightGBM at 4.59%. Although LightGBM exhibits
a slightly lower error, LSTM demonstrates stronger
capabilities in temporal modeling, effectively cap-
turing overall trends even in moderately fluctuating
segments. This suggests complementary strengths
between the two models for such scenarios, allowing

flexible model selection based on real-time require-
ments or specific fluctuation characteristics.

In the Western Third Ring Road, Section 3 (severe
congestion), the error of LSTM increases signifi-
cantly to 8.09%, substantially higher than
LightGBM's 4.71%. This reveals that under condi-
tions of intense congestion with frequent and sharp
fluctuations, LSTM tends to exhibit prediction over-
shooting. While LightGBM achieves a lower overall
error, it lacks responsiveness to sudden changes, po-
tentially underestimating the severity of congestion
during peak periods. Thus, both models show certain
limitations when applied individually in severely
congested areas, highlighting the need for a com-
bined approach to enhance prediction accuracy and
robustness.

To improve the accuracy of traffic congestion index
forecasting, this study proposes a hybrid model inte-
grating LSTM and LightGBM to leverage their com-
plementary advantages. The specific complemen-
tary benefits of this combined approach are summa-
rized in Table 6.

4.2. Construction of Hybrid Prediction Model
and Forecasting Results

The strategy for constructing the hybrid model in-
volves using a genetic algorithm to determine the
optimal weight coefficients w1 and w2 for the linear
weighted combination of the LightGBM and LSTM
models. The Root Mean Square Error (RMSE) is
employed as the fitness criterion, where a smaller
value indicates better adaptability of an individual
solution to the environment. The iterative process of
optimizing the weights is illustrated in Figure 7.
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Table 6. Comparison of Advantages and Disadvantages among LSTM, LightGBM, and the Hybrid Model

Model Advantages

Disadvantages

Applicable Scenarios

Suitable for long-term trend predic- High computational cost; may
tion; accurately captures peak con- overshoot in some peak predic-
gestion tions

LSTM

All-day traffic prediction, espe-
cially for long-term trend analysis

LightGBM ¢ hort-term prediction

Fast computation speed; suitable Lag in peak predictions; tends to Short-term rapid prediction, such
underestimate sudden congestion as immediate congestion warning

Combines long-term learning abil-
ity and fast computation; balances
errors

LightGBM-
LSTM Hybrid

Requires careful weight adjust- All-day traffic prediction + short-
ment between models

term rapid correction

Genetic Algorithm Root Mean Square Error For Iters

o]

0.8

RMSE

0.44

0.2

T T

T
0 50 100

150 200 250

Iters

Fig. 7. Iterative Optimization of Weight Coefficients Based on Root Mean Square Error (RMSE) Evaluation

As can be seen from the figure, when the population
iteration reaches 200 generations, the RMSE de-
crease stabilizes, indicating error convergence. The
optimal weight coefficients are obtained as
w=[0.6875, 0.3125], thereby achieving the hybrid
prediction model as shown in Equation (6):

feom = 0.6875f1ignecem + 0.3125f 57y (6)

Through simulation experiments, the LSTM-
LightGBM hybrid model was applied to predict traf-
fic congestion indices for the three road segments.
The predicted values were compared visually with
the actual values, and the experimental results are
presented below.

(1) Eastern Third Ring Road, Section 1 (Mild Con-
gestion Area)

As shown in Figure 8, the prediction curve of the
LSTM-LightGBM hybrid model closely follows the
overall trend of the ground truth values. The predic-
tions of the hybrid model (red dashed line) align

highly with the actual values (blue curve) across
most time periods, indicating a low overall predic-
tion error. During several critical intervals, particu-
larly the morning peak (7:30-9:00) and evening
peak (17:30-19:00), the model accurately captures
the rapid increases and decreases in the congestion
index, significantly outperforming the predictions of
standalone LSTM or LightGBM models.
Furthermore, during off-peak hours, such as from
0:00-6:00 and after 21:00, the hybrid model demon-
strates stable performance. The prediction curve
shows no significant jumps or abnormal fluctuations
and remains closely aligned with the true values, re-
flecting its strong fitting capability. This indicates
that the LSTM-LightGBM hybrid model not only
enhances responsiveness to sudden changes during
peak hours but also maintains high stability and ro-
bustness under low-congestion conditions, making it
suitable for all-day traffic prediction tasks in mildly
congested areas.
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(1) Southern Third Ring Road, Section 4 (Moderate
Congestion Area)

As shown in Figure 9, the prediction curve of the
LSTM-LightGBM hybrid model closely aligns with
the overall trend of the actual values. The predic-
tions of the hybrid model (red dashed line) remain
highly consistent with the true values (blue curve)
during most time periods, demonstrating its strong
predictive capability in moderately congested sce-
narios.

During peak hours, specifically the morning peak
(approximately 7:00-9:30) and evening peak (ap-
proximately 17:30-20:00), the hybrid model accu-
rately tracks changes in the actual traffic index, ef-
fectively capturing multiple consecutive peaks and
exhibiting excellent adaptability to rapid traffic fluc-
tuations. Although minor prediction deviations oc-
cur in certain intervals, such as 15:00-16:30, the
overall error is significantly reduced compared to
standalone LSTM or LightGBM models.

— Tiue
LS 1M+ LightGBM

250

Traffic Congestion Index
& Ny N
¥ S O

S
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n 100 200

Furthermore, during off-peak hours, including the
early morning (0:00-6:00) and late night (after
21:00), the hybrid model maintains stable and
smooth predictions without significant jumps or ab-
normal fluctuations. The predicted curve adheres
closely to the actual values, highlighting its en-
hanced robustness and generalization ability.

(2) Western Third Ring Road, Section 3 (Severe
Congestion Area)

As shown in Figure 10, the predicted values of the
hybrid model (red dashed line) generally align well
with the actual values (blue curve), indicating that
the model possesses strong trend-fitting capability
even under severe congestion scenarios and main-
tains stable prediction performance throughout the
day. Particularly during peak hours (e.g., 7:30-9:00
and 17:30-20:00) and off-peak periods (e.g., 0:00—
6:00), the prediction error is significantly reduced
compared to that of individual models.
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Fig. 8. Visualization of LSTM-LightGBM Hybrid Model Predictions in Mildly Congested Sections
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Fig. 9. Visualization of LSTM-LightGBM Hybrid Model Predictions in Moderately Congested Sections
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Fig. 10. Visualization of LSTM-LightGBM Hybrid Model Predictions in Severely Congested Sections

During peak intervals, the hybrid model effectively
predicts the rising process of the traffic congestion
index and captures abrupt changes in traffic condi-
tions in a timely manner, thereby mitigating the lag-
ging issue observed in the standalone LightGBM
model. Meanwhile, compared to the potential over-
shooting problem of the LSTM model, the hybrid
model provides smoother and better-fitting predic-
tions at multiple peaks, demonstrating enhanced
adaptability to drastic fluctuations.

Furthermore, during off-peak hours, such as late
night after 22:00, the prediction curve shows no ab-
rupt jumps and remains consistent with the actual
data, highlighting the model’s robustness and re-
sistance to interference. Although the predictions
slightly underestimate a few extreme peak values
around 11:00 or 18:30, the error is substantially
smaller compared to individual models, confirming
that the hybrid model exhibits stronger responsive-
ness and generalization ability in handling sudden
congestion.

Using the Mean Absolute Percentage Error (MAPE)
as the evaluation metric for prediction performance,
the results of the LightGBM model, LSTM model,
and LightGBM-LSTM hybrid model across differ-
ent congestion levels are summarized in Table 7.
The experimental results demonstrate that the
LightGBM-LSTM hybrid model significantly im-
proves prediction accuracy across all congestion re-
gions. Compared to the individual LSTM and
LightGBM models, the hybrid model achieves accu-
racy improvements of 4.87% and 33.06% in mildly
congested areas, 26.80% and 22.32% in moderately
congested areas, and most notably, 47.87% and
10.47% in severely congested areas. These results

fully illustrate that the hybrid model effectively in-
tegrates the temporal modeling capabilities of
LSTM with the feature representation strengths of
LightGBM, exhibiting enhanced predictive power
and robustness when dealing with complex and dy-
namic traffic environments.

Table 7. Prediction MAPE (%) of Different Models
in Various Congestion Regions

Congestion . LightGBM
Region LSTM LightGBM LSTM
Eastern Ring Rd
Secl (Mild) 480 6.82 45657
Southern Ring Rd
Sec4 (Moderate) 4.87 4.59 3.5647
Western Ring Rd 8.09 471 a1l

Sec3 (Severe)

It can be observed that the Light GBM-LSTM hybrid
model achieves significant improvements in accu-
racy compared to the individual models. The calcu-
lated accuracy enhancement of the hybrid model
across various congestion regions is illustrated in
Table 8.

Table 8. Prediction Accuracy Improvement of
LightGBM-LSTM Hybrid Model in Dif-
ferent Congestion Regions (%)

Congestion Improvement Improvement vs
Region vs LSTM LightGBM
Eastern Ring Rd Secl
(Mild) 4.87 33.06
Southern Ring Rd
Sec4 (Moderate) 26.80 2232
Western Ring Rd Sec3 47.87 10.47
(Severe)
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5. Conclusion

To address the limitations of low prediction accu-
racy when using standalone LSTM or LightGBM
models for traffic congestion index forecasting, this
study proposes a hybrid model that integrates the
strengths of both approaches. The main conclusions
are as follows:

As a deep learning model, LSTM excels at capturing
long-term dependencies and effectively learns over-
all traffic flow trends. However, it may exhibit over-
shooting during peak traffic periods. In contrast,
LightGBM shows advantages in short-term feature
extraction and rapid response to anomalous data but
often lags in responding to sudden congestion events
due to its limited ability to model temporal depend-
encies.

By combining these two models, the proposed
LightGBM-LSTM hybrid model effectively inte-
grates LSTM's capacity for temporal pattern capture
with LightGBM's strengths in short-term pattern
recognition. The hybrid model significantly im-
proves prediction accuracy across various conges-
tion levels, demonstrating enhanced stability, time-
liness, precision, and stronger generalization capa-
bility.

6. Limitations and Future Work

Despite its promising performance, this study has
several limitations that should be acknowledged.
Firstly, the model's development relied exclusively
on data from specific segments of Chengdu's Third
Ring Road over a limited timeframe. While effective
for the studied context, this constrained scope neces-
sitates caution regarding the model's generalizability
to other urban road networks with distinct traffic pat-
terns, infrastructure characteristics, or regional driv-
ing behaviors.
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