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Abstract: 

Accurate and timely prediction of the urban traffic congestion index (TCI) is crucial for implementing proactive traffic 
management and alleviating urban congestion. To address the limitations of single models in capturing both complex 

temporal dependencies and high-dimensional feature interactions, this paper proposes a novel hybrid prediction 

framework that synergistically integrates a Long Short-Term Memory (LSTM) network and a Light Gradient Boosting 
Machine (LightGBM). The model is designed to perform dual-stream learning: the LSTM module extracts medium- 

and long-term temporal patterns from historical TCI sequences, while the LightGBM module concurrently learns 

discriminative feature representations from the structured traffic data. A genetic algorithm (GA) is employed to opti-
mize the fusion weights of the two components, constructing an adaptive and cohesive LightGBM-LSTM prediction 

model. The proposed framework was validated using real-world TCI data collected from three representative segments 

with varying congestion levels (mild, moderate, and severe) on Chengdu’s Third Ring Road, covering a period from 
September to October 2024. The experimental results demonstrate that the hybrid model significantly outperforms 

both standalone LSTM and LightGBM baselines across all test scenarios. Specifically, it achieved accuracy improve-

ments of 4.87% and 33.06% in mildly congested sections, 26.80% and 22.32% in moderately congested sections, and 
47.87% and 10.47% in severely congested sections, respectively, measured by the Mean Absolute Percentage Error 

(MAPE). These findings confirm that the proposed GA-optimized LightGBM-LSTM hybrid model effectively enhances 

TCI prediction precision and robustness by leveraging complementary strengths of sequence learning and feature 
engineering. The study provides a reliable and efficient analytical tool for short-term traffic state forecasting, offering 

valuable support for the development of data-driven and refined urban traffic management strategies. 
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1. Introduction 

The rapid pace of urbanization worldwide has 

placed unprecedented strain on urban transportation 

networks, leading to severe traffic congestion that 

undermines economic efficiency, environmental 

sustainability, and quality of life. In China, the chal-

lenge is particularly acute, with motor vehicle own-

ership exceeding 453 million and continuing to grow 

(Ministry of Public Security of the People’s Repub-

lic of China, 2025,01,18). To manage this complex-

ity, cities like Beijing and Shenzhen have adopted 

macro-level indicators such as the Traffic Conges-

tion Index (TCI) to quantitatively evaluate and mon-

itor network-wide performance. Accurate, short-

term prediction of the TCI is therefore a critical task 

for enabling proactive traffic management and 

providing reliable traveler information. 

In recent years, the rapid advancement of machine 

learning has provided powerful tools for processing 

large-scale, complex nonlinear datasets. Further-

more, deep learning, as an advanced extension of 

machine learning, offers enhanced capability in un-

covering underlying patterns and logical relation-

ships embedded in such data(Shi et al., 2020). While 

significant progress has been made in traffic fore-

casting—evolving from statistical models to ad-

vanced machine learning and deep learning tech-

niques—achieving high accuracy for a complex, 

macro-level index like the TCI remains challenging. 

Standalone models, including the powerful Long 

Short-Term Memory (LSTM) network for temporal 

sequences and the efficient Light Gradient Boosting 

Machine (LightGBM) for feature-based learning, 

exhibit complementary strengths but also inherent 

limitations. LSTM models may overlook critical 

feature interactions, while LightGBM models often 

fail to fully capture complex temporal dependencies. 

Although hybrid models that combine different ar-

chitectures have shown promise, most existing ap-

proaches have not deeply integrated the distinct, 

complementary advantages of tree-based ensembles 

and recurrent neural networks into a cohesive, opti-

mally weighted framework. 

To bridge this gap, this paper proposes a novel hy-

brid LightGBM-LSTM model for the precise predic-

tion of the urban Traffic Congestion Index. The core 

innovation lies in the synergistic fusion of two com-

ponents: the LightGBM module extracts high-level, 

discriminative features from the historical data, 

while the LSTM module learns the underlying me-

dium- and long-term temporal dynamics. A genetic 

algorithm is employed to optimize the weight coef-

ficients for integrating the outputs of these two com-

ponents, creating a unified and robust prediction 

model. The primary contributions of this work are 

threefold: 

1. We propose a novel hybrid forecasting archi-

tecture that deeply integrates LightGBM and 

LSTM to simultaneously leverage feature inter-

actions and sequential patterns. 

2. We introduce a genetic algorithm-based opti-

mization strategy to determine the optimal fu-

sion weights between the two model compo-

nents, enhancing overall predictive perfor-

mance. 

3. We validate the proposed model using real-

world TCI data from a major Chinese city, 

demonstrating its superiority over several 

standalone and benchmark hybrid models 

through comprehensive experiments. 

The remainder of this paper is organized as follows: 

Section 2 provides a structured review of related 

work. Section 3 details the proposed LightGBM-

LSTM methodology. Section 4 presents the experi-

mental setup, results, and discussion. Finally, Sec-

tion 5 concludes the paper and suggests directions 

for future research. 

 

2. Literature Review 

Accurate traffic prediction is fundamental for intel-

ligent transportation systems. Recent research has 

evolved from traditional statistical methods to so-

phisticated machine learning and hybrid approaches. 

This section reviews these methodological advance-

ments with a focus on their application to traffic 

forecasting, culminating in the identification of the 

specific research gap addressed by this study. 

 

2.1. Evolution of Traffic Prediction Methodolo-

gies 

Early traffic prediction heavily relied on statistical 

time-series models, such as historical averages(An-

itha et al., 2019), the Autoregressive Integrated 

Moving Average (ARIMA) (Dissanayake et al., 

2021), Hidden Markov(Zhao et al., 2019). While 

computationally efficient, these parametric models 

often struggle with the non-linear and non-stationary 

nature of real-world traffic data, leading to limited 



Liu, S., Gao J., Hong, Y., Zhou J. 

Archives of Transport, 76(4), 175-190, 2025 

177 

 

 

accuracy. The advent of machine learning intro-

duced more flexible non-parametric models. How-

ever, shallow neural networks and support vector 

machines can be insufficient for capturing the com-

plex, high-dimensional patterns in large-scale traffic 

datasets(Kuang et al., 2020). 

The breakthrough came with deep learning, which 

excels at automatic feature extraction from raw data. 

In particular, Recurrent Neural Networks (RNNs) 

are naturally suited for sequential data. To over-

comethe vanishing gradient problem in standard 

RNNs, the Long Short-Term Memory (LSTM) net-

work was introduced (Hochreiter et al., 1997) and 

has since become a cornerstone for time-series fore-

casting. Its suitability for time-series traffic data has 

been demonstrated in various prediction applica-

tions. For example, Wang et al.(Ma et al., 2015)were 

among the first to introduce LSTM into traffic speed 

prediction, noting its advantages in handling non-

linear patterns and long-term dependencies. Subse-

quent studies by Zhong et al.(Zhong et al., 2018). 

Deep learning (DL) Neural Network (NN) ap-

proaches have been proven to extract temporal fea-

tures from time series data, including Convolutional 

Neural Networks and Recurrent Neural Net-

works(Zhang et al., 2023). Approaches using DL al-

gorithms have been focused on short-term traffic 

flow prediction(Gu et al., 2019). 

LightGBM (Light Gradient Boosting Machine) is a 

training algorithm based on Gradient Boosting De-

cision Tree (GBDT), characterized by fast training 

speed, low memory consumption, and high predic-

tion accuracy(Alafate et al., 2019).While GBDT 

struggles with maintaining accuracy and efficiency 

at large data scales(Kadiyala et al., 2018), 

LightGBM achieves significant improvements in 

training efficiency, memory usage, and scalability. 

It can directly process categorical features while ef-

fectively avoiding dimensionality explosion. 

While deep learning models have improved traffic 

prediction accuracy, their growing complexity in-

creases computational cost and tuning difficulty(Ku-

mar et al., 2024). High-dimensional spatiotemporal 

data further exacerbates this optimization challenge. 

Although LightGBM has shown strong potential in 

time-series forecasting due to its efficiency, its deep 

integration for traffic congestion index prediction re-

mains under-explored(F. Li et al., 2024). 

2.2. Hybrid Models for Enhanced Traffic Fore-

casting 

Platforms such as Baidu and Gaud provide conges-

tion index to guide travel. However, the existence of 

a delay makes it unrealistic to avoid congestion in 

advance. Thus, it’s really important to predict the 

congestion index in real-time. 

The limitation of collection technology results in a 

lack of traffic characteristics, which leads to predic-

tion errors. To solve this problem, it can be consid-

ered to enhance and generate features based on the 

original dataset. Yang Zhao et al.(Yang et al., 2021) 

reported a hybrid LSTM-GCN model with three-

way temporal features (SCLN-TTF), leveraging 

Long Short-Term Memory Network(LSTM) to ex-

tract temporal features, and graph convolutional 

neural networks to extract spatial features; He et 

al.(He et al., 2021) introduced a technique for pre-

diction based on trees and deep learning (DL). The 

essay described a means of feature generation, 

which is of great significance for feature extraction 

and generation. In a word, deep learning and tree-

based theory can infer new features with limited fea-

tures in the dataset, and have the ability to create fea-

tures. In(L. Li et al., 2020), the LSTM-SPRVM 

model and the fuzzy comprehensive evaluation-

based method were leveraged to predict and rank the 

congestion, and a traffic congestion prediction and 

visualization framework based on machine learning 

and a fuzzy comprehensive evaluation-MF-TCPV 

was proposed. Note that the framework can visually 

observe the results of congestion prediction, and the 

accuracy is also preferable. 

With the increasing availability of large-scale da-

tasets, research in traffic congestion prediction has 

progressively shifted towards deep learning method-

ologies(Cheng et al., 2022). Proposed hybrid models 

in the literature(Chu et al., 2020) demonstrate that 

these approaches yield substantial enhancements in 

prediction accuracy compared to conventional meth-

ods. 

 

2.3. Identified Research Gap and Contribution 

By synthesizing the literature reviewed above, a pro-

gressive trend is evident: research has evolved from 

standalone models to hybrid frameworks that at-

tempt to combine algorithmic strengths. However, 

critical limitations persist: (1) Tree-based models 

(e.g., LightGBM) excel at feature learning but often 

neglect temporal dynamics when used in isolation in 
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traffic studies(N. Li et al., 2023); (2) Deep sequence 

models (e.g., LSTM) capture temporal patterns but 

may underutilize the powerful feature representation 

capabilities of tree ensembles(Cheng et al., 2022); 

(3) Most existing hybrids lack a principled and opti-

mized mechanism to fuse these fundamentally dif-

ferent model families into a cohesive predictive en-

gine(Cao et al., 2021). 

This paper is motivated by the circumstance that the 

complementary strengths of LightGBM and LSTM 

have not been fully exploited within a unified frame-

work for traffic prediction. Specifically, the question 

of how to optimally integrate feature-based learning 

with temporal sequence modeling to achieve supe-

rior prediction performance remains open. 

To address these gaps and achieve more accurate 

and robust traffic congestion index (TCI) prediction, 

this study proposes a novel hybrid LightGBM-

LSTM model. The model is designed to perform 

dual-stream learning: the LightGBM component ex-

tracts high-level discriminative features from histor-

ical and contextual data, while the LSTM compo-

nent captures complex medium- and long-term tem-

poral dependencies. Furthermore, a genetic algo-

rithm is employed to optimize the fusion weights, 

ensuring an adaptive and effective integration of 

both components' outputs. 

 

3. Methodology and Data 

3.1. Definition of Traffic Congestion Index Pre-

diction 

The problem of traffic congestion prediction can be 

defined as forecasting future congestion conditions 

based on historical traffic data. To quantify the se-

verity of congestion, the concept of the Traffic Con-

gestion Index (TCI, also referred to as the Traffic In-

dex or Traffic Performance Index) has been introdu-

ced. The TCI is a comprehensive metric whose va-

lues correspond to different levels of service, ran-

ging from free-flow conditions to various degrees of 

congestion. A higher index value indicates more se-

vere traffic congestion. This indicator provides an 

intuitive reflection and description of the operational 

status of urban roads or road networks (Specifica-

tions for urban traffic performance evaluation, 

2016).  

The Traffic Congestion Index reflects both the aver-

age travel speed on roads in a specific area and the 

public’s perception of traffic congestion conditions. 

Compared to traditional traffic parameter indicators, 

it offers greater intuitiveness and clarity. When se-

lecting parameters for constructing such an index, it 

is essential to ensure that the data is readily obtaina-

ble. In addition to conventional data collection tech-

niques, leveraging open data sources—such as 

Amap, Baidu Maps, and related platforms—is 

highly recommended. This approach helps alleviate 

the challenges associated with limited data acquisi-

tion capabilities and facilitates more efficient and 

scalable traffic monitoring(Cheng et al., 2022). 

Therefore, this study adopts the Traffic Congestion 

Index provided by the Baidu Map Traffic Infor-

mation Release and Analysis Platform as the foun-

dational data metric for classifying traffic opera-

tional characteristics and predicting road traffic con-

ditions. 

The conversion formula between the Baidu Real-

time Congestion Index and other traffic evaluation 

metrics is presented in Equation (1): 

 

TPI = 𝐹(TTR) (1) 

 

Where TPI denotes the Traffic Performance Index, 

and TTR represents the Travel Time Ratio. The cal-

culation formula for TTR is given in Equation (2). 

 

TTR =
𝑡𝑘𝑗

𝑡𝑗
 (2) 

 

Where tkj denotes the average time taken for vehi-

cles to traverse road segment j during time interval 

k, and, tkjrepresents the travel time under free-flow 

conditions on the same segment. The classification 

of traffic states according to the Baidu Map Smart 

Transportation Platform is summarized in Table 1. 

 

Table 1. Traffic State Classification Criteria on the 

Baidu Platform 

Traffic State 

 

Average 

Speed

（km/h） 

Traffic Perfor-

mance Index

（TPI） 

Traffic 

State 

Level 

Smooth V≥44 TPI≤1.5 1 

Congested 33≤V<44 1.5<TPI≤2 2 

Heavy 

Congestion 
16≤V<33 2<TPI≤4 3 

Severe 

Congestion 
V<16 TPI＞4 4 
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3.2. The Proposed LightGBM-LSTM Hybrid 

Model 

For traffic congestion index prediction, a hybrid 

LightGBM-LSTM prediction model is constructed, 

which consists of three core components: an LSTM 

module, a LightGBM module, and an integration 

module. 
 

3.2.1. LSTM Module 

The Long Short-Term Memory (LSTM) model is a 

special type of recurrent neural network (RNN) spe-

cifically designed to address the gradient vanishing 

and explosion problems commonly encountered in 

traditional RNNs when processing long sequence 

data. Its core innovation lies in the use of gating 

mechanisms and a cell state to achieve long-term 

memory retention and dynamic control of infor-

mation flow. Building upon the traditional RNN 

structure, the LSTM introduces a cell state and three 

gating mechanisms: The Forget Gate determines 

which information from the previous time step 

should be discarded. The Input Gate controls 

whether new information from the current input 

should be stored. The Output Gate regulates the 

amount of information output from the current cell 

state. 

Through these gating mechanisms, the LSTM selec-

tively forgets and updates information, effectively 

mitigating the gradient-related issues of traditional 

RNNs and significantly enhancing modeling capa-

bility for time series data. The cell state acts as a con-

tinuous information pathway throughout all time 

steps, functioning like a "conveyor belt" that stores 

and transfers long-term memory. The internal struc-

ture of the LSTM cell is illustrated in Figure 1. 
 

 
Fig. 1. Schematic Diagram of the Memory Cell 

Structure 

The specific procedural steps of the LSTM algo-

rithm are illustrated in Figure 2. In this process, the 

Epoch controls the overall number of training cy-

cles, determining the depth of the model’s learning 

from the data. The Iteration determines the fre-

quency of parameter updates within each epoch, in-

fluencing both training stability and convergence 

speed. Through multiple epochs of training and con-

tinuous parameter optimization during each itera-

tion, the model progressively reduces prediction er-

rors and enhances overall performance. 

 

Start

Parameter 
Initialization of 

the LSTM Model

LSTM 
Network

the loss function 
converges

Training 
Completion

Predicted Sequence 
Output

Iterator=iterat
or+1

N

Epoch=epoch+1 N

Y

Y

Error Metric 
Calculation

End

Input Data 
Preprocessing

 
Fig. 2. Detailed Flowchart of the LSTM Algorithm 

 
Owing to its unique memory structure, the LSTM 

model demonstrates significant advantages in the 

field of time series prediction, making it particularly 

suitable for scenarios such as traffic congestion in-

dex forecasting, which exhibits strong temporal de-

pendencies and complex dynamic characteristics. 

Through the synergistic action of the cell state and 

gating mechanisms, the LSTM effectively captures 
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long-term patterns (e.g., periodic morning and even-

ing peaks) and short-term fluctuations (e.g., impacts 

of unexpected incidents) in traffic data, while also 

mitigating the vanishing gradient problem com-

monly encountered in traditional recurrent neural 

networks. 

 

3.2.2. LightGBM Module 

The LightGBM algorithm is an efficient, optimized 

version of GBDT (Gradient Boosting Decision 

Tree). It incorporates several advanced techniques, 

including: 

− Histogram-based Algorithm: Accelerates train-

ing by bucketing continuous features into dis-

crete bins. 

− Gradient-based One-Side Sampling (GOSS): 

Retains samples with large gradients and ran-

domly discards those with small gradients to re-

duce data size. 

− Exclusive Feature Bundling (EFB): Bundles 

mutually exclusive sparse features to reduce di-

mensionality. 

− Leaf-wise Growth Strategy: Splits the leaf with 

maximum gain at each step, creating deeper 

trees for lower loss. 

Additionally, LightGBM natively supports categor-

ical features and feature parallelism, significantly 

enhancing efficiency and performance while reduc-

ing memory consumption. The overall workflow is 

illustrated in Figure 3. 

 

3.3. Integration with Genetic Algorithm 

By integrating multiple highly accurate prediction 

models, it is possible to leverage the strengths of 

each model while mitigating their individual limita-

tions, thereby enhancing overall predictive perfor-

mance. To address the shortcomings of single-model 

approaches, this study adopts an LSTM-LightGBM 

hybrid model that combines LSTM’s capability to 

capture temporal trends with LightGBM’s profi-

ciency in processing historical features. This fusion 

leverages the advantages of both methods to im-

prove the accuracy of short-term traffic congestion 

index forecasting. 

Specifically, the hybrid model employs a linear 

weighting mechanism for integration, with optimal 

weight coefficients determined using a genetic algo-

rithm. The mathematical formulation of the com-

bined model is given by Equation (3): 

 

𝑓𝑐𝑜𝑚 = 𝑤1𝑓𝐿𝑖𝑔ℎ𝑡𝐺𝐵𝑀 +𝑤2𝑓𝐿𝑆𝑇𝑀 (3) 

 

where: 

𝑤1
 
denotes the weight coefficient for the LightGBM 

model, 

𝑤2 denotes the weight coefficient for the LSTM 

model,  

and the weights satisfy the constraint:𝑤1+𝑤2=1.
 The Genetic Algorithm (GA) is a global optimiza-

tion method inspired by natural selection and genetic 

mechanisms, widely applied to solve complex prob-

lems—especially those that are nonlinear, multi-

modal, or combinatorial in nature. Drawing on prin-

ciples from biological evolution, GA effectively ex-

plores complex search spaces by simulating genetic 

operations such as selection, crossover, and muta-

tion. 

 

Start

Setting Initial 
Parameters for 

LightGBM

Training the 
LightGBM Model

Testing the 
LightGBM Model

Requirements 
Satisfied

Optimization Result 
Output

Evaluation Metrics 
Calculation

End

Y

Training Dataset

Test Dataset

Iteration Count 
+1N

 
Fig. 3. Overall Workflow Diagram of the LightGBM 

Algorithm 

 

Therefore, the optimal weight coefficients for the 

hybrid model can be determined using a genetic al-

gorithm. The specific steps of the optimization pro-

cess are summarized in Table 2. 
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Table 2. Steps for Calculating Optimal Weight Coefficients Using Genetic Algorithm 

Step Name Description 

1 
Population 

Initialization 

Randomly initialize multiple individuals, each representing a weight combination(w1,w2)，
satisfying w1+w2=1 

2 
Fitness 

Calculation 

Compute the combined prediction result 𝑓𝑐𝑜𝑚 = 𝑤1𝑓𝐿𝑖𝑔ℎ𝑡𝐺𝐵𝑀 +𝑤2𝑓𝐿𝑆𝑇𝑀，and use the Mean 

Squared Error (MSE) as the fitness value. 

3 Selection 
Apply roulette wheel selection based on fitness values to choose superior individuals for the 

next generation. 

4 Crossover 
Perform simulated binary crossover on selected individuals to generate new weight combina-

tions. 

5 Mutation 
Apply Gaussian mutation to a subset of individuals to increase diversity and avoid local op-

tima. 

6 
Termination 
Condition 

Stop evolution when the maximum number of generations (e.g., 100) is reached or the error 
converges (e.g., change<threshold for 10 consecutive generations). 

7 
Optimal Weight 

Extraction 

Select the individual with the highest fitness as the optimal weight combination (w1*, w2*) 

for the final LSTM-LightGBM hybrid prediction. 

3.4. Data Preparation and Experimental Setup 

3.4.1. Data Preparation 

Currently, numerous online map platforms leverage 

internet technology and big data analytics to deeply 

mine and process massive amounts of travel and lo-

cation data, providing the public with real-time traf-

fic information. For example, platforms such as 

Baidu Map Smart Transportation and Amap (Gaode 

Map) update every five minutes, displaying infor-

mation about the top ten most congested road seg-

ments. The details include road names, congestion 

delay index, travel speed, travel time, and delay du-

ration, among other metrics.(Hochreiter et al., 1997) 

This study utilizes traffic congestion index data from 

the Baidu Map Smart Transportation Analysis Plat-

form for representative segments of Chengdu’s 

Third Ring Road: 

− Severely Congested Area: Western Third Ring 

Road, Section 3 

− Moderately Congested Area: Southern Third 

Ring Road, Section 4 

− Mildly Congested Area: Eastern Third Ring 

Road, Section 1 

Based on this data, machine learning models are 

constructed to predict the traffic operational status. 

The experimental dataset consists of traffic conges-

tion index values collected from September 1, 2024, 

to October 12, 2024(a sample is shown in Table 3). 

The dataset is divided as follows: 

− Training set: The first 80% of the data. 

− Validation set: The subsequent 20% of the data. 

− Test set: Data from October 13, 2024(reserved 

for final evaluation). 

The prediction task covers a full 24-hour period with 

a time granularity of 3 minutes. 

Input Features 

The model input includes the following features to 

capture spatiotemporal patterns: 

1) Road Segment Identifier: Specific road seg-

ment (e.g., Western Third Ring Road Section 

3). 

2) Congestion Level: Severe, moderate, or mild. 

3) Historical Traffic Data: Historical traffic con-

gestion index values. 

4) Temporal Context: 

− Month and day of the week. 

− Time period within the day (defined below). 

− Binary indicator for weekends or public holi-

days. 

Definition of Time Periods (Peak/Off-Peak Hours) 

− Weekday Morning Peak:7:00–9:00 

− Weekday Evening Peak:17:00–19:00 

− Weekend/Holiday Morning Peak:10:00–12:00 

− Weekend/Holiday Evening Peak:16:00–18:00 

− Off-Peak Hours: All other time periods 

This structured input enables the model to capture 

complex spatiotemporal patterns and contextual fac-

tors affecting traffic congestion. Subsequently, an 

empirical simulation is conducted to visually com-

pare the model’s predictions with actual observed 

values.
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Table 3. Example of Traffic Congestion Index Data for Sections of Chengdu’s Third Ring Road 

Date Time Road Name 
Road Length 

(km) 

Congestion 

Index 

Avg Speed 

(km/h) 

Congested 

Length (km) 

…… …… …… …… …… …… …… 

2024/9/29 8:24:00 

Southern Third Ring 

Road, Section 4 

5.678 1.832 45.43 0.052 

2024/9/29 8:27:00 5.678 2.06 40.402 0.258 

2024/9/29 8:30:00 5.678 2.105 39.538 0.412 

2024/9/29 8:33:00 5.678 2.148 38.747 0.465 

2024/9/29 8:36:00 5.678 2.06 40.402 0.315 

2024/9/29 8:39:00 5.678 2.203 37.779 0.446 

2024/9/29 8:42:00 5.678 2.247 37.04 0.494 

2024/9/29 8:45:00 5.678 2.258 36.859 0.515 

2024/9/29 8:48:00 5.678 2.352 35.386 0.663 

2024/9/29 8:51:00 5.678 2.419 34.406 0.767 

2024/9/29 8:54:00 5.678 2.43 34.25 0.776 

…… …… …… …… …… …… …… 

3.4.2. Evaluation Metrics 

This study employs the Mean Absolute Percentage 

Error (MAPE) and the Root Mean Square Error 

(RMSE) as evaluation metrics. Among them, MAPE 

is an error metric commonly used in regression 

tasks, representing the proportion of prediction error 

relative to the true value. A smaller MAPE value in-

dicates smaller model error and higher prediction ac-

curacy. Its mathematical expression is shown in 

Equation (4): 

 

MAPE =
100%

𝑛
∑

|𝑦̂𝑖 − 𝑦𝑖|

𝑦𝑖

𝑛

𝑖=1

 (4) 

 

where: 

𝑦̂𝑖
 
 denotes the predicted value of the i-th sample, 

𝑦𝑖
 
denotes the actual value of the i-th sample, 

n represents the total number of samples.
 

Meanwhile, RMSE serves as the fitness criterion, 

where a smaller value indicates better adaptability of 

an individual to the environment. Its mathematical 

expression is given by Equation (5): 

 

RMSE = √
1

𝑁
∑(100𝑦𝑖 − 100𝑦𝑖 ′)2
𝑛

𝑖=1

 (5) 

 

where: 

𝑦𝑖 ′

 
represents the predicted value of the i-th sample, 

𝑦𝑖
 
represents the actual value of the i-th sample, 

N denotes the total number of samples. 

To ensure the reproducibility of the experiments and 

to provide context for the computational efficiency 

discussed later, the hardware and software configu-

rations used for model training and evaluation in this 

study are detailed in Table 4. 

 

Table 4. Experimental Environment Configuration 

Item OS CPU RAM IDE Storage 

Specifi-

cation 

Win-
dows10 

AMD 
Ryzen5 

8GB VSCode 128GB 

 

4. Result Analysis and Performance Compari-

son 

4.1. Analysis of Single Model Results 

To preliminarily and intuitively assess the predictive 

capability of our proposed hybrid model, we first 

present a visual comparison between the predicted 

and the actual observed traffic congestion index 

(TCI) over a continuous time series. Figure 4-6 il-

lustrates this comparison for a selected test period, 

allowing for an initial observation of how closely the 

model’s output follows the real traffic fluctuations. 

(1) Eastern Third Ring Road, Section 1 

As shown in the prediction visualization in Figure 4, 

the predicted values from the LSTM model (red 

dashed line) align more closely with the true values 

(blue curve). Particularly during morning and even-

ing peak hours, the LSTM demonstrates a stronger 

capability to capture abrupt changes in the traffic in-

dex. In contrast, the predictions from LightGBM 

(green dotted curve) exhibit an overall smoother 

trend. Although LightGBM shows some deviations 

at peak points, it still maintains a reasonable fit to 

the overall trend of the ground truth data. 
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(2) Southern Third Ring Road, Section 4 (Moder-

ately Congested Area) 

As observed in the prediction visualization of Figure 

5, the predicted values from the LSTM model (red 

dashed line) demonstrate a strong alignment with the 

ground truth (blue curve). The model effectively 

captures the rapid upward trends in traffic conges-

tion during both morning and evening peak hours, 

despite slight overestimation during certain inter-

vals, such as multiple spikes in the evening peak. 

Overall, the prediction trend closely matches the ac-

tual data. 

In contrast, the predictions generated by the 

LightGBM model (green dotted line) exhibit notice-

able lag during peak periods, leading to underesti-

mation of congestion levels in some high-traffic in-

tervals. Additionally, its predictions during off-peak 

hours (e.g., 0:00–6:00) display minor fluctuations 

and occasional overestimation in stable periods, in-

dicating inconsistent performance across varying 

traffic conditions. 

(3) Western Third Ring Road, Section 3 (Severely 

Congested Area) 

As can be seen from Figure 6, the predicted values 

of the LSTM model (red dashed line) accurately cap-

ture multiple traffic peaks, demonstrating particu-

larly strong performance during morning and even-

ing rush hours. The overall prediction trend remains 

stable throughout the day without significant abnor-

mal fluctuations, although slight overshooting 

(overestimation) occurs in certain localized seg-

ments. 

In contrast, the predictions of the LightGBM model 

(green dotted line) exhibit noticeable lag during 

peak periods and generally underestimate peak val-

ues. This indicates LightGBM’s limited ability to 

model abrupt changes under severe congestion con-

ditions. Additionally, anomalous jumps appear dur-

ing some off-peak intervals, primarily due to its dif-

ficulty in capturing complex nonlinear temporal de-

pendencies.

 

 
Fig. 4. Visualization of LightGBM and LSTM Predictions in Mildly Congested Sections 
 

 
Fig. 5. Visualization of LightGBM and LSTM Predictions in Moderately Congested Sections 
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Fig. 6. Visualization of LightGBM and LSTM Predictions in Severely Congested Sections 

 

Table 5. Mean Absolute Percentage Error (MAPE) 

Across Different Congestion Levels (%) 

Congestion Type 
 

LSTM LightGBM 

Eastern Ring Rd Sec1 

(Mild) 
4.80 6.82 

Southern Ring Rd Sec4 
(Moderate) 

4.87 4.59 

Western Ring Rd Sec3 

(Severe) 
8.09 4.71 

 

Using MAPE as the evaluation metric, the predictive 

performance of the LightGBM and LSTM models 

for traffic congestion index across different types of 

road segments is compared in Table 5. The follow-

ing observations can be made: 

In the Eastern Third Ring Road, Section 1 (mild con-

gestion), the error of LSTM is 4.80%, significantly 

lower than LightGBM's 6.82%. This indicates that 

LSTM is more effective at capturing overall trends 

and slight fluctuations, particularly excelling in ac-

curately predicting minor variations during peak and 

off-peak hours. LightGBM, in contrast, shows 

higher error in this scenario, likely due to its limited 

ability to model subtle nonlinear variations in mild 

congestion conditions. 

In the Southern Third Ring Road, Section 4 (moder-

ate congestion), the prediction errors of both models 

are relatively close, with LSTM at 4.87% and 

LightGBM at 4.59%. Although LightGBM exhibits 

a slightly lower error, LSTM demonstrates stronger 

capabilities in temporal modeling, effectively cap-

turing overall trends even in moderately fluctuating 

segments. This suggests complementary strengths 

between the two models for such scenarios, allowing 

flexible model selection based on real-time require-

ments or specific fluctuation characteristics. 

In the Western Third Ring Road, Section 3 (severe 

congestion), the error of LSTM increases signifi-

cantly to 8.09%, substantially higher than 

LightGBM's 4.71%. This reveals that under condi-

tions of intense congestion with frequent and sharp 

fluctuations, LSTM tends to exhibit prediction over-

shooting. While LightGBM achieves a lower overall 

error, it lacks responsiveness to sudden changes, po-

tentially underestimating the severity of congestion 

during peak periods. Thus, both models show certain 

limitations when applied individually in severely 

congested areas, highlighting the need for a com-

bined approach to enhance prediction accuracy and 

robustness. 

To improve the accuracy of traffic congestion index 

forecasting, this study proposes a hybrid model inte-

grating LSTM and LightGBM to leverage their com-

plementary advantages. The specific complemen-

tary benefits of this combined approach are summa-

rized in Table 6. 

 

4.2. Construction of Hybrid Prediction Model 

and Forecasting Results 

The strategy for constructing the hybrid model in-

volves using a genetic algorithm to determine the 

optimal weight coefficients w1 and w2 for the linear 

weighted combination of the LightGBM and LSTM 

models. The Root Mean Square Error (RMSE) is 

employed as the fitness criterion, where a smaller 

value indicates better adaptability of an individual 

solution to the environment. The iterative process of 

optimizing the weights is illustrated in Figure 7. 

 



Liu, S., Gao J., Hong, Y., Zhou J. 

Archives of Transport, 76(4), 175-190, 2025 

185 

 

 

Table 6. Comparison of Advantages and Disadvantages among LSTM, LightGBM, and the Hybrid Model 
Model Advantages Disadvantages Applicable Scenarios 

LSTM 

Suitable for long-term trend predic-

tion; accurately captures peak con-
gestion 

High computational cost; may 

overshoot in some peak predic-
tions 

All-day traffic prediction, espe-

cially for long-term trend analysis 

LightGBM 
Fast computation speed; suitable 

for short-term prediction 

Lag in peak predictions; tends to 

underestimate sudden congestion 

Short-term rapid prediction, such 

as immediate congestion warning 

LightGBM-

LSTM Hybrid 

Combines long-term learning abil-
ity and fast computation; balances 

errors 

Requires careful weight adjust-

ment between models 

All-day traffic prediction + short-

term rapid correction 

 

 
Fig. 7. Iterative Optimization of Weight Coefficients Based on Root Mean Square Error (RMSE) Evaluation 
 

As can be seen from the figure, when the population 

iteration reaches 200 generations, the RMSE de-

crease stabilizes, indicating error convergence. The 

optimal weight coefficients are obtained as 

w=[0.6875，0.3125], thereby achieving the hybrid 

prediction model as shown in Equation (6): 

 

𝑓𝑐𝑜𝑚 = 0.6875𝑓𝐿𝑖𝑔ℎ𝑡𝐺𝐵𝑀 + 0.3125𝑓𝐿𝑆𝑇𝑀 (6) 

 

Through simulation experiments, the LSTM-

LightGBM hybrid model was applied to predict traf-

fic congestion indices for the three road segments. 

The predicted values were compared visually with 

the actual values, and the experimental results are 

presented below. 

(1) Eastern Third Ring Road, Section 1 (Mild Con-

gestion Area) 

As shown in Figure 8, the prediction curve of the 

LSTM-LightGBM hybrid model closely follows the 

overall trend of the ground truth values. The predic-

tions of the hybrid model (red dashed line) align 

highly with the actual values (blue curve) across 

most time periods, indicating a low overall predic-

tion error. During several critical intervals, particu-

larly the morning peak (7:30–9:00) and evening 

peak (17:30–19:00), the model accurately captures 

the rapid increases and decreases in the congestion 

index, significantly outperforming the predictions of 

standalone LSTM or LightGBM models. 

Furthermore, during off-peak hours, such as from 

0:00–6:00 and after 21:00, the hybrid model demon-

strates stable performance. The prediction curve 

shows no significant jumps or abnormal fluctuations 

and remains closely aligned with the true values, re-

flecting its strong fitting capability. This indicates 

that the LSTM-LightGBM hybrid model not only 

enhances responsiveness to sudden changes during 

peak hours but also maintains high stability and ro-

bustness under low-congestion conditions, making it 

suitable for all-day traffic prediction tasks in mildly 

congested areas. 
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(1) Southern Third Ring Road, Section 4 (Moderate 

Congestion Area) 

As shown in Figure 9, the prediction curve of the 

LSTM-LightGBM hybrid model closely aligns with 

the overall trend of the actual values. The predic-

tions of the hybrid model (red dashed line) remain 

highly consistent with the true values (blue curve) 

during most time periods, demonstrating its strong 

predictive capability in moderately congested sce-

narios. 

During peak hours, specifically the morning peak 

(approximately 7:00–9:30) and evening peak (ap-

proximately 17:30–20:00), the hybrid model accu-

rately tracks changes in the actual traffic index, ef-

fectively capturing multiple consecutive peaks and 

exhibiting excellent adaptability to rapid traffic fluc-

tuations. Although minor prediction deviations oc-

cur in certain intervals, such as 15:00–16:30, the 

overall error is significantly reduced compared to 

standalone LSTM or LightGBM models. 

Furthermore, during off-peak hours, including the 

early morning (0:00–6:00) and late night (after 

21:00), the hybrid model maintains stable and 

smooth predictions without significant jumps or ab-

normal fluctuations. The predicted curve adheres 

closely to the actual values, highlighting its en-

hanced robustness and generalization ability. 

(2) Western Third Ring Road, Section 3 (Severe 

Congestion Area) 

As shown in Figure 10, the predicted values of the 

hybrid model (red dashed line) generally align well 

with the actual values (blue curve), indicating that 

the model possesses strong trend-fitting capability 

even under severe congestion scenarios and main-

tains stable prediction performance throughout the 

day. Particularly during peak hours (e.g., 7:30–9:00 

and 17:30–20:00) and off-peak periods (e.g., 0:00–

6:00), the prediction error is significantly reduced 

compared to that of individual models.

 

 
Fig. 8. Visualization of LSTM-LightGBM Hybrid Model Predictions in Mildly Congested Sections 
 

 
Fig. 9. Visualization of LSTM-LightGBM Hybrid Model Predictions in Moderately Congested Sections 
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Fig. 10. Visualization of LSTM-LightGBM Hybrid Model Predictions in Severely Congested Sections 
 

During peak intervals, the hybrid model effectively 

predicts the rising process of the traffic congestion 

index and captures abrupt changes in traffic condi-

tions in a timely manner, thereby mitigating the lag-

ging issue observed in the standalone LightGBM 

model. Meanwhile, compared to the potential over-

shooting problem of the LSTM model, the hybrid 

model provides smoother and better-fitting predic-

tions at multiple peaks, demonstrating enhanced 

adaptability to drastic fluctuations. 

Furthermore, during off-peak hours, such as late 

night after 22:00, the prediction curve shows no ab-

rupt jumps and remains consistent with the actual 

data, highlighting the model’s robustness and re-

sistance to interference. Although the predictions 

slightly underestimate a few extreme peak values 

around 11:00 or 18:30, the error is substantially 

smaller compared to individual models, confirming 

that the hybrid model exhibits stronger responsive-

ness and generalization ability in handling sudden 

congestion. 

Using the Mean Absolute Percentage Error (MAPE) 

as the evaluation metric for prediction performance, 

the results of the LightGBM model, LSTM model, 

and LightGBM-LSTM hybrid model across differ-

ent congestion levels are summarized in Table 7. 

The experimental results demonstrate that the 

LightGBM-LSTM hybrid model significantly im-

proves prediction accuracy across all congestion re-

gions. Compared to the individual LSTM and 

LightGBM models, the hybrid model achieves accu-

racy improvements of 4.87% and 33.06% in mildly 

congested areas, 26.80% and 22.32% in moderately 

congested areas, and most notably, 47.87% and 

10.47% in severely congested areas. These results 

fully illustrate that the hybrid model effectively in-

tegrates the temporal modeling capabilities of 

LSTM with the feature representation strengths of 

LightGBM, exhibiting enhanced predictive power 

and robustness when dealing with complex and dy-

namic traffic environments. 

 

Table 7. Prediction MAPE (%) of Different Models 

in Various Congestion Regions 
Congestion 

Region 
LSTM LightGBM 

LightGBM

-LSTM 

Eastern Ring Rd 

Sec1 (Mild) 
4.80 6.82 4.5657 

Southern Ring Rd 
Sec4 (Moderate) 

4.87 4.59 3.5647 

Western Ring Rd 

Sec3 (Severe) 
8.09 4.71 4.2171 

 

It can be observed that the LightGBM-LSTM hybrid 

model achieves significant improvements in accu-

racy compared to the individual models. The calcu-

lated accuracy enhancement of the hybrid model 

across various congestion regions is illustrated in 

Table 8. 
 

Table 8. Prediction Accuracy Improvement of 

LightGBM-LSTM Hybrid Model in Dif-

ferent Congestion Regions (%) 
Congestion 

Region 

Improvement 

vs LSTM 

Improvement vs 

LightGBM 

Eastern Ring Rd Sec1 

(Mild) 
4.87 33.06 

Southern Ring Rd 

Sec4 (Moderate) 
26.80 22.32 

Western Ring Rd Sec3 

(Severe) 
47.87 10.47 
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5. Conclusion 

To address the limitations of low prediction accu-

racy when using standalone LSTM or LightGBM 

models for traffic congestion index forecasting, this 

study proposes a hybrid model that integrates the 

strengths of both approaches. The main conclusions 

are as follows: 

As a deep learning model, LSTM excels at capturing 

long-term dependencies and effectively learns over-

all traffic flow trends. However, it may exhibit over-

shooting during peak traffic periods. In contrast, 

LightGBM shows advantages in short-term feature 

extraction and rapid response to anomalous data but 

often lags in responding to sudden congestion events 

due to its limited ability to model temporal depend-

encies. 

By combining these two models, the proposed 

LightGBM-LSTM hybrid model effectively inte-

grates LSTM's capacity for temporal pattern capture 

with LightGBM's strengths in short-term pattern 

recognition. The hybrid model significantly im-

proves prediction accuracy across various conges-

tion levels, demonstrating enhanced stability, time-

liness, precision, and stronger generalization capa-

bility. 

 

6. Limitations and Future Work 

Despite its promising performance, this study has 

several limitations that should be acknowledged. 

Firstly, the model's development relied exclusively 

on data from specific segments of Chengdu's Third 

Ring Road over a limited timeframe. While effective 

for the studied context, this constrained scope neces-

sitates caution regarding the model's generalizability 

to other urban road networks with distinct traffic pat-

terns, infrastructure characteristics, or regional driv-

ing behaviors. 

Secondly, and equally important, the current model 

does not incorporate various external factors known 

to significantly impact traffic conditions. Weather 

conditions (e.g., rain, snow, fog), traffic incidents, 

road construction, large-scale events, and temporary 

traffic control measures can cause substantial, often 

sudden, changes in congestion that are not fully cap-

tured by historical TCI data alone. The absence of 

these variables represents a limitation in modeling 

non-recurring congestion events. 

Future research will therefore focus on two primary 

directions: 

− Expanding Data Scope and Assessing General-

izability:Applying and validating the proposed 

hybrid framework across multiple cities and di-

verse road network types to thoroughly evalu-

ate its transferability and robustness. 

− Integrating Multi-Source Data: Developing 

mechanisms to effectively incorporate real-

time and forecasted external data (e.g., weather, 

incident reports) into the model architecture. 

Exploring feature engineering and fusion tech-

niques for these factors is expected to further 

enhance prediction accuracy, particularly for 

anomaly-driven congestion, leading to a more 

comprehensive and robust traffic forecasting 

system. 
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