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Abstract: 

Vehicle trajectory data, primarily characterized by time-series features, is the key information carrier for vehicle 

movement. It documents dynamic characteristics such as position, velocity, and acceleration across spatiotemporal 

dimensions. This data supports critical tasks, including microscopic traffic flow modeling, driving state analysis, and 
traffic safety assessment. To address two key challenges — low-sampling-rate trajectory data losing high-frequency 

motion details in intelligent transportation systems, and traditional methods failing to simultaneously meet require-

ments for high precision and motion plausibility — this study proposes a high-fidelity vehicle trajectory reconstruction 
algorithm based on centralized spatiotemporal feature fusion. Based on the SOFTS (Series-cOre Fused Time Series) 

framework, the algorithm constructs a global-local collaborative spatiotemporal feature representation mechanism 

via a multidimensional enhanced STAR (Spatio-Temporal Aggregation and Representation) module. Specifically, it 
incorporates a spatiotemporal embedding layer to capture interdependencies between timestamps and spatial coordi-

nates. Residual connections preserve original trajectory details, while a spatial proximity weighting mechanism opti-

mizes core feature aggregation. A dynamic weight matrix is constructed to adaptively focus on velocity-position cor-
relations among neighboring vehicles within a 20-meter radius. Kinematic constraints are integrated to ensure the 

physical plausibility of reconstructed trajectories, including a kinematic loss function. This function uses acceleration 

smoothness regularization terms and trajectory curvature continuity regularization to guide the model toward physi-
cally feasible solutions that comply with vehicle dynamics. To validate effectiveness, the proposed method was exten-

sively tested on public datasets (NGSIM, HighD, and CQSkyeyeX) and systematically compared with traditional ap-

proaches (e.g., linear interpolation) and deep learning models. Experimental results demonstrate that the improved 
algorithm significantly outperforms baseline methods in interpolation accuracy, spatiotemporal smoothness, and com-

putational efficiency. The findings can be applied to high-frequency trajectory generation for autonomous driving, 

microscopic traffic flow simulation, and other domains, providing critical technical support for upgrading intelligent 
transportation systems from data collection to decision-making optimization. 
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1. Introduction 

Vehicle trajectory data serves as a core foundation 

for intelligent transportation systems and autono-

mous driving research. It underpins key tasks such 

as traffic behavior pattern analysis, driving decision 

optimization, and accident risk prediction (H. Li & 

Yu, 2025; Biszko et al., 2024). However, existing ve-

hicle trajectory data is constrained by acquisition 

and storage costs, resulting in widespread insuffi-

cient sampling frequency. This limitation causes the 

loss of fine-grained motion characteristics in high-

dynamic behaviors — such as abrupt acceleration 

and emergency lane changes — severely restricting 

the accuracy of traffic flow simulation and driving 

scene reconstruction (Quddus & Washington, 2015). 

In complex interactive scenarios, low-frequency 

sampling may obscure critical frames of vehicle-ve-

hicle conflicts, directly impacting the robustness 

verification of autonomous driving algorithms in 

edge cases (Waddell et al., 2020). For interpolating 

and reconstructing low-frequency trajectory data, 

existing research falls broadly into two categories. 

First, kinematic model-based methods (e.g., cubic 

spline interpolation, constant acceleration models) 

ensure physical plausibility but struggle to model 

nonlinear spatiotemporal interactions in complex 

traffic scenarios (Wang et al., 2024). Second, deep 

learning-based end-to-end methods (e.g., Trajec-

tory-Transformer) capture data-driven spatiotem-

poral patterns but often generate trajectories that vi-

olate vehicle dynamics. This is due to insufficient 

explicit constraints, such as acceleration abruptions 

and curvature discontinuities (Liu et al., 2020). Fun-

damentally, the inability of existing methods to cou-

ple spatiotemporal feature representation with phys-

ical law optimization has become a core bottleneck 

for high-frequency trajectory reconstruction. 

To address these gaps, this study aims to develop a 

spatiotemporal feature-fused high-fidelity vehicle 

trajectory reconstruction method (ST-SOFTS, Spa-

tio-Temporal Enhanced SOFTS). Built upon the 

SOFTS algorithm (Han et al., 2024), ST-SOFTS in-

troduces three innovations: (1) a spatiotemporal-

aware embedding layer to capture temporal-spatial 

dependencies in trajectory timestamps and coordi-

nates; (2) a spatial-weighted core aggregation mod-

ule to enhance modeling of inter-vehicle spatiotem-

poral dependencies; (3) a spatiotemporal constraint 

loss function to ensure reconstructed trajectories 

comply with kinematic constraints (e.g., velocity 

smoothness, safe distance). 

 

2. Literature Review 

Vehicle trajectory reconstruction remains a key re-

search topic in intelligent transportation, with its 

technological evolution broadly categorized into 

two branches: traditional methods and deep learning 

methods. Traditional trajectory interpolation ap-

proaches, predominantly rooted in vehicle kinemat-

ics priors, fit local motion patterns through parame-

terized models. Representative techniques include 

cubic spline interpolation (He et al., 2024), constant 

acceleration models (Yang et al., 2018), and Kalman 

filtering (Zhang et al., 2023). These methods gener-

ate smooth trajectories by integrating physical con-

straints (e.g., acceleration continuity) and exhibit 

stability in low-complexity scenarios. However, 

their limitations include reliance on strong assump-

tions (e.g., constant velocity or acceleration). These 

assumptions hinder their ability to characterize non-

linear interactions in complex traffic flows — such 

as emergency obstacle avoidance and multi-vehicle 

interactions (Reis et al., 2023). In highly dynamic or 

dense traffic scenarios, such approaches often devi-

ate from real-world trajectories due to model mis-

match (Yang et al., 2025). Concurrently, deep learn-

ing-based trajectory generation methods have 

emerged as the mainstream with the rapid advance-

ment of neural network technologies. 

Recurrent neural networks (RNNs) and long short-

term memory networks (LSTMs) (Lin et al., 2024) 

capture long-term dependencies in vehicle motion 

through temporal modeling (Ip et al., 2021). How-

ever, they encounter challenges in sequence align-

ment when modeling multi-vehicle interactions. 

Graph neural networks (GNNs) have significantly 

improved trajectory prediction accuracy in interac-

tive scenarios (Youssef et al., 2023) by explicitly 

modeling vehicle spatial topological relationships 

(Singh & Srivastava, 2022). For example, the Spa-

tio-Temporal Dynamic Graph Neural Network (Li et 

al., 2023) leverages spatiotemporal graph convolu-

tions to extract local traffic flow features, while Tra-

jectory-Transformer (Amin et al., 2024) employs 

self-attention mechanisms to model global spatio-

temporal dependencies. Notably, most existing ap-

proaches focus predominantly on trajectory predic-

tion rather than low-sampled data interpolation. 

They often neglect kinematic constraints, generating 
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trajectories with abrupt acceleration changes or cur-

vature discontinuities (Rathore et al., 2019). Wang et 

al. (2025) employed a two-layer LSTM network to 

extract contextual information from target vehicles 

and their neighbors, enhancing trajectory prediction 

accuracy. Additionally, vehicle-road cooperative 

technologies have provided critical inputs for trajec-

tory modeling. For instance, Lei et al. (2024) utilized 

dynamic environmental data from surrounding vehi-

cles and roadside units to forecast neighboring vehi-

cle trajectories. 

To balance the flexibility and physical plausibility 

of data-driven models, attempts have been made to 

integrate kinematic constraints into deep learning 

frameworks. Gu et al. (2024) proposed incorporating 

vehicle stability, lane-changing duration, terminal 

velocity, and target lane distance into the loss func-

tion to enforce trajectory smoothness. Jiang et al. 

(2023) corrected neural network outputs through dy-

namic model post-processing. However, these ap-

proaches typically use loosely coupled frameworks, 

failing to achieve end-to-end collaborative optimiza-

tion of physical laws and spatiotemporal features. 

Regarding spatiotemporal feature fusion, centralized 

modeling has gained traction (Jiang et al., 2024). For 

example, Li et al. (2023) aggregated multi-vehicle 

features via global pooling layers, but their coarse-

grained spatial interaction modeling struggled to 

capture heterogeneous influences in local neighbor-

hoods. 

Overall, existing research exhibits three critical lim-

itations: (1) spatiotemporal modeling fragmentation: 

Traditional methods process temporal and spatial di-

mensions in isolation, hindering the characterization 

of dynamic interactions in complex traffic scenarios; 

(2) inadequate physical constraints: Data-driven 

methods often generate trajectories that violate vehi-

cle dynamics, compromising their utility in high-fi-

delity applications (e.g., autonomous driving simu-

lation); (3) sparse local interaction modeling: Most 

centralized approaches overlook differentiated 

weight allocation in spatial neighborhoods during 

global feature aggregation, leading to the loss of crit-

ical interaction information. 

Therefore, this study proposes a high-fidelity vehi-

cle trajectory reconstruction algorithm based on cen-

tralized spatiotemporal feature fusion (CSTFF). The 

innovations include: (1) developing a global spatio-

temporal core aggregation network, which achieves 

collaborative modeling of long-range dependencies 

and local interactions in traffic scenarios through 

multi-scale spatiotemporal embedding and a prox-

imity-weighting mechanism; (2) designing a kine-

matic-constraint-guided joint optimization frame-

work, which integrates physical priors (e.g., acceler-

ation smoothness, trajectory curvature continuity) in 

a differentiable form to ensure the physical feasibil-

ity of reconstructed trajectories. Experimental re-

sults demonstrate that the proposed method outper-

forms mainstream baseline models in both recon-

struction accuracy and motion plausibility. It offers 

a novel approach for high-frequency restoration of 

low-sampled trajectory data, balancing data-driven 

learning and physical constraints. 

 

3. Methodology 

Vehicle trajectory data reconstruction entails dense 

inference of sparse, low-frequency observation data 

across spatiotemporal dimensions. This task re-

quires algorithms to mine spatiotemporal depend-

ency patterns among vehicles — such as temporal 

sequence continuity and spatial positional correla-

tions — from partial observations of vehicle posi-

tions and velocities. By integrating vehicle motion 

constraints, the process aims to estimate missing or 

undersampled spatiotemporal points and generate 

high-frequency continuous trajectories that reflect 

real-world traffic flow characteristics. This recon-

struction process involves two key challenges: mod-

eling temporal dependencies within individual vehi-

cle trajectories and capturing spatial interactions 

across multiple vehicles. The core challenge lies in 

balancing data-driven feature learning with domain 

knowledge to achieve high-precision, physically 

plausible trajectory completion. 

 

3.1. Model Overview  

The ST-SOFTS (Spatio-Temporal Enhanced Series-

cOre Fused Time Series) model aims to address the 

challenge of high-frequency reconstruction for low-

frequency vehicle trajectory data. Its core architec-

ture builds upon the SOFTS algorithm, enhanced by 

three innovations: a spatiotemporal-aware embed-

ding layer, a spatial-weighted core aggregation mod-

ule, and a spatiotemporal constraint optimization 

layer. These innovations enable efficient modeling 

of spatiotemporal dependencies across multi-vehicle 

trajectories. As illustrated in Fig. 1, the model takes 

as input a low-frequency trajectory matrix with 

missing values, 𝑋 ∈ ℝ𝐶×L×D(where 𝐶 is the number 
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of vehicles, 𝐿 is the time step, and 𝐷 is the trajectory 

dimension) along with corresponding timestamp se-

quences. First, the spatiotemporal embedding layer 

encodes temporal intervals and spatial coordinates 

into high-dimensional feature vectors. Next, the im-

proved STAR (Spatio-Temporal Aggregation and 

Representation) module dynamically generates 

global core features using spatial proximity weights, 

facilitating centralized spatiotemporal feature fusion 

across vehicles. Finally, the spatiotemporal con-

straint optimization layer enforces temporal smooth-

ness (e.g., velocity continuity) and spatial safety 

(e.g., minimum distance) to produce high-frequency 

continuous trajectories, 𝑋 ∈ ℝ𝐶×𝐿′×𝐷, where 𝐿′ > 𝐿 

denotes the upsampled time steps. 

 

3.2. Spatial-time embedding layer 

Spatiotemporal reconstruction of vehicle trajectories 

requires simultaneous capture of interactions be-

tween temporal dynamics and spatial dependencies. 

The spacetime embedding layer of the ST-SOFTS 

framework transforms raw trajectory data into high-

dimensional feature vectors that encapsulate spatio-

temporal semantics. This is achieved through joint 

modeling of temporal and spatial feature encodings, 

establishing the foundational input for subsequent 

core aggregation modules. 

To address temporal discontinuities inherent in low-

frequency trajectory data, ST-SOFTS integrates rel-

ative time interval encoding with sinusoidal position 

encoding to accentuate sequential and periodic pat-

terns. For each time step t, the relative time interval 

∆𝑡𝑡 = 𝑡 − 𝑡1 is computed to delineate the temporal 

positional relationship of trajectory points. Tempo-

ral embeddings are then generated using trigonome-

tric functions: 

 

𝐸𝑡
𝑡𝑖𝑚𝑒 = [sin (

∆𝑡𝑡

𝑇𝑝𝑒𝑟𝑖𝑜𝑑
) , cos⁡(

∆𝑡𝑡

𝑇𝑝𝑒𝑟𝑖𝑜𝑑
)] ∈ ℝ𝑑𝑡𝑖𝑚𝑒  (1) 

 

Among them, 𝑇𝑝𝑒𝑟𝑖𝑜𝑑 is a periodic parameter, and 

𝑑𝑡𝑖𝑚𝑒  denotes the temporal embedding dimension. 

This encoding method mitigates the curse of dimen-

sionality associated with absolute timestamps and 

exhibits robustness to nonlinear variations in time 

intervals. For spatial features, ST-SOFTS captures 

inter-vehicle interactions by generating dynamic 

spatial proximity weights via an euclidean distance 

matrix, replacing the fixed-radius neighborhood 

used in traditional methods. For the coordinates of 

vehicle c at time t (𝑥𝑐,𝑡 , 𝑦𝑐,𝑡), the distance to each 

vehicle i is calculated as: 
 

𝐷𝑐,𝑡,𝑖 = √(𝑥𝑐,𝑡 − 𝑥𝑖,𝑡)
2
+ (𝑦𝑐,𝑡 − 𝑦𝑖,𝑡)

2
  (2) 

 

Generate dynamic weights with SoftMax normaliza-

tion, focusing on adjacent vehicles: 
 

𝑤𝑐,𝑡,𝑖 =
exp⁡(−𝐷𝑐,𝑡,𝑖/𝜎)

∑ exp⁡(−𝐷𝑐,𝑡,𝑗/𝜎)
𝐶
𝑗=1

⁡⁡(𝑖, 𝑗 ∈ [1, 𝐶])  (3) 

 

Where 𝜎 is a parameter controlling the concentration 

of weight distribution. For spatiotemporal feature 

fusion, the raw trajectory features (position, veloc-

ity), temporal embeddings, and spatial weights are 

concatenated and mapped into a unified spatiotem-

poral embedding via a linear layer 𝑆𝑐,𝑡 ∈ ℝ𝑑: 

 

𝑆𝑐,𝑡 = Linear([𝑋𝑐,𝑡; 𝐸𝑡
𝑡𝑖𝑚𝑒; 𝑤𝑐,𝑡])  (4) 

 

 
Fig. 1. Schematic diagram of ST-SOFTS algorithm structure 
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Among them, 𝑋𝑐,𝑡 ∈ ℝ𝐷the original trajectory fea-

ture. This method breaks the independent processing 

of limitation of space-time features in traditional 

methods , provides composite features containing 

interactive information for subsequent core aggrega-

tion. 

 

3.3. Space-weighted core aggregation module 

The core innovation of ST-SOFTS lies in enhancing 

the original STAR module of SOFTS. By integrat-

ing spatial proximity weights with spatiotemporal 

features, ST-SOFTS upgrades the time-series aggre-

gation of the original algorithm to spatiotemporal 

joint aggregation, enabling centralized and efficient 

interaction among multiple vehicle trajectories. In 

contrast to the stochastic pooling mechanism in va-

nilla SOFTS, ST-SOFTS employs spatial proximity 

weights 𝑤𝑐,𝑡,𝑖  to perform weighted aggregation on 

individual vehicles' spatiotemporal embeddings, 

generating a global core feature⁡𝑜𝑡 ∈ ℝ𝑑⁡that encap-

sulates spatiotemporal dependencies: 

 

𝑜𝑡 = ∑ 𝑤𝑐,𝑡,𝑖 ∙ MLP1(𝑆𝑐,𝑡)
𝐶
𝑐=1   (5) 

 

Among them, MLP1  is a two-layer perceptron that 

maps the spatiotemporal embedding𝑆𝑐,𝑡to the core 

feature space. This component offers two key ad-

vantages: First, the weights𝑤𝑐,𝑡,𝑖enable the core fea-

tures to prioritize neighboring vehicles. For exam-

ple, in car-following scenarios, the influential 

weight of the preceding vehicle’s trajectory on the 

current vehicle is significantly higher than that of 

distant vehicles. Second, the aggregation process re-

quires only O(C) computational complexity, avoid-

ing the O(C2) complexity of attention mechanisms 

and thus proving suitable for large-scale scenarios 

involving tens of thousands of vehicles. 

To prevent the dilution of individual vehicle details 

by global core features, ST-SOFTS achieves com-

plementary fusion of local features and global de-

pendencies through residual connections. The sin-

gle-vehicle spatiotemporal embedding ⁡𝑆𝑐,𝑡  is con-

catenated with the global core⁡𝑜𝑡⁡along the channel 

dimension, forming[𝑆𝑐,𝑡; 𝑜𝑡] ∈ ℝ2𝑑 , which is then 

projected via a multi-layer perceptron (MLP) before 

residual connections are added to retain the original 

local embedding information: 

 

𝑆𝑡
′ = MLP2([𝑆𝑐,𝑡; 𝑜𝑡]) + 𝑆𝑐,𝑡  (6) 

MLP2 restores the dimension to d, where residual 

connections preserve original feature details (e.g., 

abrupt acceleration changes of individual vehicles) 

while integrating global spatiotemporal dependen-

cies. The spatial-weighted core aggregation module 

employs a three-layer stacked architecture, with dy-

namically updated spatial weights in each layer: 

shallow modules focus on local spatiotemporal de-

tails (e.g., vehicle acceleration/deceleration pat-

terns), while deep modules capture the overall ve-

locity trends of global traffic flow. 

 

3.4. Spatiotemporal Constraint Optimization 

Layer 

To address the challenge of deep learning models 

generating physically infeasible trajectories, ST-

SOFTS introduces a joint spatiotemporal constraint 

loss that incorporates kinematic prior knowledge 

into the optimization process, ensuring recon-

structed trajectories adhere to real-world traffic flow 

dynamics. The temporal continuity of vehicle mo-

tion requires that velocity changes between adjacent 

timesteps remain within plausible bounds (e.g., ac-

celeration constraint⁡𝑎𝑚𝑎𝑥 = 5𝑚/𝑠2), enforced via 

L1 regularization: 

 

ℒ𝑠𝑚𝑜𝑜𝑡ℎ =
1

𝐶𝐿′
∑ ∑ |𝑣̂𝑐,𝑡 − 𝑣̂𝑐,𝑡−1|

𝐿′
𝑡=2

𝐶
𝑐=1   (7) 

 

Here, 𝑣̂𝑐,𝑡 ⁡denotes the reconstructed velocity. This 

loss term compels the model to learn smooth veloc-

ity variation patterns, thereby preventing interpola-

tion results from exhibiting implausible sudden ac-

celerations or decelerations. 

Additionally, in dense traffic scenarios, vehicles 

must maintain a minimum safety distance 𝑑𝑚𝑖𝑛 =
2𝑚, which is enforced through the following loss 

constraint: 

 

ℒ𝑠𝑎𝑓𝑒 =
1

𝐶2𝐿′
∑ ∑ max⁡(0, 𝑑𝑚𝑖𝑛 − ‖𝑝̂𝑖,𝑡 −𝑖<𝑗
𝐿′
𝑡=1

𝑝̂𝑗,𝑡‖2
)  

(8) 

 

Here, 𝑝̂𝑖,𝑡 = (𝑥̂𝑐,𝑡 , 𝑦̂𝑐,𝑡)  denotes the reconstructed 

vehicle position. This loss term penalizes vehicle 

pairs with excessively close distances, thereby en-

hancing the safety and plausibility of reconstructed 

trajectories. 

The total loss function fuses the data fitting loss and 

the constraint loss: 
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ℒ = ℒ𝑀𝑆𝐸 + 𝜆1ℒ𝑠𝑚𝑜𝑜𝑡ℎ + 𝜆2ℒ𝑠𝑎𝑓𝑒   (9) 

 

ℒ𝑀𝑆𝐸 =
1

𝐶𝐿′𝐷
∑ (𝑋̂𝑐,𝑡,𝑑 − 𝑋𝑐,𝑡,𝑑

𝑔𝑡
)2𝑐,𝑡,𝑑   (10) 

 

Here,⁡ℒ𝑀𝑆𝐸 denotes the mean squared error (MSE) 

between reconstructed trajectories and ground-truth 

trajectories, where 𝜆1，𝜆2  are constraint weights 

tuned via a validation set. 

The pseudo-code of the ST-SOFTS framework is 

shown in Table 1.

 

Table. 1. The pseudo-code of the ST-SOFTS framework 
Algorithm: Spatio-Temporal Enhanced Series-cOre Fused Time Series(ST-SOFTS) 

Input: Low-frequency trajectory matrix 𝑋 ∈ ℝ𝐶×L×D (C: number of vehicles, L: time steps, D: features including posi-

tion/velocity); Timestamp sequence T; Other hyperparameters. 

Output: Reconstructed high-frequency trajectory 𝑋 ∈ ℝ𝐶×𝐿′×𝐷. 

 

1. Preprocessing 

Normalize spatial coordinates, velocity, and acceleration 

 

2. Initialize Parameters 

Linear layer weights for spatiotemporal embedding 

MLP parameters for core aggregation⁡(MLP1, ⁡MLP2) 

Optimizer (Adam) 

 

3. Spatiotemporal Embedding Layer 

For each vehicle 𝑐 ∈ [1, 𝐶] and time step 𝑡 ∈ [1, 𝐿]: 

a. Compute temporal interval: ∆𝑡𝑡 = 𝑡 − 𝑡1 

b. Temporal embedding: 𝐸𝑡
𝑡𝑖𝑚𝑒 = [sin (

∆𝑡𝑡

𝑇𝑝𝑒𝑟𝑖𝑜𝑑
) , cos⁡(

∆𝑡𝑡

𝑇𝑝𝑒𝑟𝑖𝑜𝑑
)] ∈ ℝ𝑑𝑡𝑖𝑚𝑒 

c. Spatial weight for neighboring vehicles 𝑖 ∈ [1, 𝐶] : 𝐷𝑐,𝑡,𝑖 = √(𝑥𝑐,𝑡 − 𝑥𝑖,𝑡)
2
+ (𝑦𝑐,𝑡 − 𝑦𝑖,𝑡)

2
;⁡𝑤𝑐,𝑡,𝑖 =

𝑆𝑜𝑓𝑡𝑀𝑎𝑥(
exp⁡(−𝐷𝑐,𝑡,𝑖/𝜎)

∑ exp⁡(−𝐷𝑐,𝑡,𝑗/𝜎)
𝐶
𝑗=1

)⁡⁡(𝑖, 𝑗 ∈ [1, 𝐶]) 

d. Fusion embedding: 𝑆𝑐,𝑡 = Linear([𝑋𝑐,𝑡; 𝐸𝑡
𝑡𝑖𝑚𝑒; 𝑤𝑐,𝑡]) 

e.  

4. Spatial-Weighted Core Aggregation 

For each vehicle l ∈ [1,3]: 

a. Compute global core feature: ot = ∑ 𝑤𝑐,𝑡,𝑖 ∙ MLP1(𝑆𝑐,𝑡)
𝐶
𝑐=1  

b. Residual fusion: 𝑆𝑡
′ = MLP2([𝑆𝑐,𝑡; 𝑜𝑡]) + 𝑆𝑐,𝑡 

 

5. High-Frequency Trajectory Generation 

Upsample 𝑆𝑐,𝑡
′  to 𝐿′ time steps via linear interpolation 

Map features back to position/velocity via output layer 

 

6. Loss Calculation & Optimization 

a. MSE loss: ℒ𝑀𝑆𝐸 =
1

𝐶𝐿′𝐷
∑ (𝑋̂𝑐,𝑡,𝑑 − 𝑋𝑐,𝑡,𝑑

𝑔𝑡
)2𝑐,𝑡,𝑑  

b. Smoothness loss (acceleration constraint): ℒsmootℎ =
1

CL′
∑ ∑ |v̂c,t − v̂c,t−1|

L′
t=2

C
c=1  

c. Safety loss (minimum distance): ℒsafe =
1

C2L′
∑ ∑ max⁡(0, dmin − ‖p̂i,t − p̂j,t‖2

)i<j
L′
t=1  

d. Total loss: ℒ = ℒMSE + λ1ℒsmootℎ + λ2ℒsafe 

e. Update parameters via Adam optimizer 

Return 𝑋̂ 
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4. Experimental verification 

4.1. Experimental Datasets 

To validate the data reconstruction performance of 

ST-SOFTS, we evaluate the algorithm using three 

publicly available vehicle trajectory datasets: 

NGSIM, HighD, and CQSkyeyeX. 

NGSIM: Collected by the U.S. Federal Highway 

Administration (FHWA), this dataset contains high-

way vehicle trajectories from the US-101 and I-80 

road segments, serving as benchmark data for high-

density traffic flow research. Recorded at a 10 Hz 

sampling frequency, each scenario lasts approxi-

mately 15 minutes and includes typical highway be-

haviors such as car-following, lane-changing, and 

overtaking. 

HighD: Released by the Institute for Automotive 

Engineering at RWTH Aachen University (Ger-

many), this large-scale naturalistic driving dataset 

captures vehicle trajectories on German highways. 

Collected at 25 Hz, it includes 11.5 hours of meas-

urements, trajectories of 110,000 vehicles, and 5,600 

annotated lane-change maneuvers. 

CQSkyeyeX: This dataset uses drones to collect 

5.1k high-resolution videos of highway traffic oper-

ations. Vehicle trajectories are extracted via ad-

vanced computer vision techniques, providing 650 

minutes of measurement data across eight locations 

on Chinese highways. Scenarios include straight 

segments, weaving areas, and merge/diverge sec-

tions. 

 

4.2. Experimental Setup 

Given the high-frequency nature of the original da-

tasets and the low-frequency requirements of real-

world applications, the experiments first involve 

downsampling and missing data simulation on the 

raw data. Since the three original datasets have non-

uniform sampling frequencies, their raw data are 

uniformly downsampled to 5 Hz as model input (as 

shown in Fig. 2), with the reconstruction target set 

to 20 Hz — forming a typical "low-frequency input 

— high-frequency output" application scenario. 

The selection of 5 Hz (input) and 20 Hz (target) is 

based on three key considerations: (1) Field con-

sistency: 5 Hz is a typical low-sampling-rate sce-

nario in vehicle trajectory research, which simulates 

practical challenges such as sensor transmission de-

lays or low-cost hardware limitations; (2) Data 

adaptability: The original sampling rates of the 

NGSIM (10 Hz), HighD (25 Hz), and CQSkyeyeX 

(15 Hz) datasets allow 2:1, 5:1 or 3:1 downsampling 

to 5 Hz, ensuring no loss of key motion features 

while reflecting data sparsity; (3) Application and 

fairness: 20 Hz complies with the high-precision tra-

jectory requirements of relevant standards for intel-

ligent vehicles and matches the target frequency of 

baseline methods, ensuring both practical applica-

bility and experimental fairness. 

During the data preprocessing stage, raw data were 

normalized as follows: spatial coordinates were first 

translated to the scene centroid (i.e., repositioned to 

the origin at the scene centroid) and then mapped to 

the interval [-1, 1] using standard min-max scaling.  

 

 
Fig. 2 Schematic diagram of data downsampling and reconstruction. The input (5 Hz) and target (20 Hz) 

frequencies are selected based on field consistency, data adaptability, and application requirements 
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Dynamic features (e.g., velocity, acceleration) were 

normalized using the mean and standard deviation 

calculated from the training set. 

To ensure fair and reproducible model training and 

evaluation, the trajectory data of each dataset were 

randomly split into training, validation, and test sets 

at a fixed ratio of 7:1:2. A random seed (seed = 123) 

was used to fix the splitting result-this avoids ran-

domness in data partitioning and ensures that other 

researchers can replicate the same data subsets for 

comparison. 

All experiments were conducted on a server with the 

following hardware configuration: CPU: Intel Core 

i7-14700K(2.0 GHz, 16 cores); GPU: NVIDIA RTX 

4090 24GB; memory: 64GB DDR5. The software 

environment included: deep learning framework: 

PyTorch 2.0.1; CUDA version: 11.8; and data pro-

cessing libraries: Pandas 1.5.3, NumPy 1.15.1, and 

Matplotlib 3.7.1. 

 

4.3. Model Parameter Configuration 

The core parameters of ST-SOFTS are determined 

through grid search combined with validation set 

tuning, detailed as follows: In the spatiotemporal 

embedding layer, temporal features adopt sinusoidal 

positional encoding with an embedding dimension 

set to 𝑑𝑡𝑖𝑚𝑒 = 32, capturing the periodicity and se-

quential dependencies of time series; the spatial 

proximity weight 𝜎 = 5 focuses the weight distribu-

tion on neighboring vehicles within 20 meters, bal-

ancing the interaction effects between nearby and 

distant vehicles. The core aggregation module con-

sists of three stacked layers of improved STAR 

structures, where each MLP layer employs a two-

layer GELU activation function with a hidden layer 

dimension 𝑑 = 128. Residual connections are used 

to preserve original feature details and mitigate the 

vanishing gradient problem in deep networks. The 

weights of constraint losses are optimized via the 

validation set: the temporal smoothness loss weight 

𝜆1 = 0.3  and the spatial safety loss weight 𝜆2 =
0.2, balancing data fitting accuracy and the intensity 

of physical constraints. During training, the Adam 

optimizer is used with an initial learning rate of 

1 × 10−4 , a batch size of 128, and 200 training 

epochs. An early stopping mechanism is introduced 

(training terminates if the validation loss does not 

decrease for 10 consecutive epochs) to prevent over-

fitting and enhance model generalization. 

 

4.4. Comparison Methods 

To compare the performance differences of various 

methods in the experiments, representative tradi-

tional methods and deep learning models are se-

lected as baselines, covering three technical routes: 

single-vehicle interpolation, spatiotemporal graph 

models, and attention models. 

Linear Interpolation (LI): A linear fitting method 

based on single-vehicle time series, assuming linear 

changes in motion states between adjacent 

timesteps. 

Cubic Spline Interpolation (CSI): Employs piece-

wise cubic polynomial fitting to ensure second-de-

rivative continuity of trajectories and improve curve 

smoothness. 

Kalman Filter (KF): Establishes a state-space 

model for single-vehicle constant-velocity motion 

and estimates missing trajectory points through re-

cursive filtering. 

STS-DGNN (Li et al., 2023): A dynamic graph con-

volutional network that constructs interaction graphs 

from vehicle positions and captures spatiotemporal 

dependencies via graph convolution and temporal 

convolution. 

Vanilla SOFTS (Yang et al., 2018): A baseline 

model without spatiotemporal constraints, used to 

validate the independent contributions of the spatial 

weighting mechanism and constraint module. 

TrajectoFormer (Amin et al., 2024): A spatiotem-

poral joint attention model that leverages multi-head 

self-attention to model global spatiotemporal de-

pendencies, serving as a high-complexity compara-

tive method. 

TCN-SA (Li et al., 2023): A hybrid model combin-

ing TCN for temporal feature extraction and self-at-

tention for long-range dependency modeling, which 

has shown strong performance in trajectory interpo-

lation tasks. 

 

4.5. Evaluation Metrics 

This study designs a multi-metric evaluation frame-

work from two dimensions: reconstruction accuracy 

and spatiotemporal plausibility. For reconstruction 

accuracy, the position mean squared error (MSEpos) 

quantifies the overall deviation between recon-

structed positions and ground-truth trajectories, 

while the velocity mean absolute error (MAEvel) as-

sesses the absolute precision of velocity reconstruc-

tion. Regarding spatiotemporal plausibility, tem-

poral smoothness is measured by the standard 
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deviation of reconstructed accelerations—denoted 

as 𝜎𝑣 , the standard deviation of velocity change 

rates: 

 

𝜎𝑣 = √
1

𝐶𝐿′
∑ ∑ (𝑎̂𝑐,𝑡 − 𝑎̅𝑐)

2𝐿′
𝑡=2

𝐶
𝑐=1 ,⁡  

𝑎̂𝑐,𝑡 =
𝑣̂𝑐,𝑡 − 𝑣̂𝑐,𝑡−1

∆𝑡
 

(11) 

 

Where 𝑎̅𝑐 denotes the average acceleration of vehi-

cle c, and⁡∆𝑡 represents the time interval of 0.2s. Ad-

ditionally, we calculate the proportion of vehicles 

that maintain the minimum safety distance (𝑑𝑚𝑖𝑛 =
2𝑚): 

 

 

𝑆𝐶𝑅 =
1

𝑁𝑡𝑜𝑡𝑎𝑙

∑ ∑ 𝑆(‖𝑝̂𝑖,𝑡 − 𝑝̂𝑗,𝑡‖ ≥1<𝑖<𝑗<𝐶
𝐿′
𝑡=1

𝑑𝑚𝑖𝑛) × 100%  
(12) 

 

Where 𝑁𝑡𝑜𝑡𝑎𝑙 denotes the total number of vehicles, 

and⁡𝑆(∙) represents the indicator function. 

 

4.6. Experimental Results 

Under identical experimental conditions, the trajec-

tory data reconstruction results of different algo-

rithms on the three datasets are shown in Table 2. 

Across the three datasets, traditional methods 

(LI/CSI/KF) exhibit significantly higher position 

mean squared error (MSEpos) than deep learning 

models. This is because they rely solely on single-

vehicle time series and fail to account for inter-vehi-

cle spatial interactions — shortcomings that amplify 

errors in dense car-following or lane-changing sce-

narios. While cubic spline interpolation (CSI) en-

hances trajectory smoothness via piecewise polyno-

mial fitting, its single-vehicle modeling framework 

fails to effectively capture global traffic flow dy-

namics. The Kalman filter (KF), based on a con-

stant-velocity motion assumption, achieves a veloc-

ity mean absolute error (MAEvel) of 1.38 m/s in 

HighD’s stable car-following scenarios — slightly 

outperforming CSI — but exhibits significantly 

larger errors in NGSIM’s lane-changing and 

CQSkyeyeX’s hard-braking scenarios. This high-

lights the limited adaptability of physical models to 

complex motions. 

ST-SOFTS reduces MSEpos by 15.2% (NGSIM), 

10.6% (HighD), and 9.0% (CQSkyeyeX) compared 

to the baseline Vanilla SOFTS, demonstrating the 

synergistic effects of its spatial weighting mecha-

nism and spatiotemporal constraints. Relative to 

STS-GNN, it achieves 27.0% (NGSIM), 23.0% 

(HighD), and 17.1% (CQSkyeyeX) reductions in 

MSEpos, demonstrating the efficiency advantages of 

centralized aggregation over graph-based architec-

tures. 

 

Table 2. Trajectory Data Reconstruction Results of 

Different Algorithms on Three Datasets 

Dataset Method 
MSEpos 

(m²) 

MAEvel 

(m/s) 

SCR 

（%） 

NGSIM 

ST-SOFTS 0.89 0.75 91.1 

SOFTS 1.05 0.82 80.5 

STS-DGNN 1.22 0.89 83.2 

TrajectoFormer 1.10 0.85 82.9 

TCN-SA 0.98 0.81 87.7 

KF 1.79 1.08 66.6 

CSI 1.87 1.12 62.1 

LI 2.15 1.23 63.7 

HighD 

ST-SOFTS 1.27 0.88 92.3 

SOFTS 1.42 0.95 78.5 

STS-DGNN 1.50 0.98 85.2 

TrajectoFormer 1.65 1.02 83.0 

TCN-SA 1.44 0.90 88.8 

KF 2.78 1.38 68.7 

CSI 2.89 1.45 65.2 

LI 3.21 1.56 62.3 

CQSkyeyeX 

ST-SOFTS 1.92 1.03 88.7 

SOFTS 2.11 1.15 75.2 

STS-DGNN 2.34 1.21 81.3 

TrajectoFormer 2.22 1.18 79.5 

TCN-SA 2.03 1.12 82.7 

KF 3.81 1.69 63.8 

CSI 3.95 1.76 61.5 

LI 4.32 1.89 59.7 

 

Regarding the safety distance compliance rate 

(SCR), traditional methods exhibit SCR values be-

low 70% (HighD) and 65% (CQSkyeyeX) due to 

their disregard for inter-vehicle spatial relationships. 

In contrast, ST-SOFTS increases compliance to 

92.3% and 88.7% through its spatial safety loss 

function. Consider CQSkyeyeX’s intersection sce-

nario: Linear Interpolation (LI) achieves an SCR of 

only 62.1%, with 38% of vehicle pairs violating the 

minimum safety distance (spacing < 2 m), while ST-

SOFTS reduces this proportion to 11.3%. This stark 

contrast highlights the limitations of traditional 

methods in high-density interaction environments, 

where capturing spatial dependencies is critical for 

realistic trajectory reconstruction.
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Fig. 3. Comparison of the Standard Deviation of Velocity Change Rates 𝜎𝑣 

 

Fig. 3 compares the standard deviation of velocity 

change rates 𝜎𝑣 across all methods. Traditional ap-

proaches exhibit 𝜎𝑣  values consistently exceeding 

0.6 m/s² (NGSIM: LI=0.68, CSI=0.65, KF=0.63)—

significantly higher than deep learning models (ST-

SOFTS=0.32). This indicates their inability to cap-

ture the temporal continuity of vehicle motion, lead-

ing to unrealistic acceleration fluctuations. For in-

stance, in HighD’s acceleration lane scenarios, LI 

yields a 𝜎𝑣 of 0.85 m/s² — three times that of ST-

SOFTS — directly contradicting the smooth accel-

eration dynamics inherent in real-world traffic flow. 

A validation experiment using a real lane-changing 

trajectory from CQSkyeyeX is conducted. Fig. 4 vis-

ualizes the ground-truth trajectory alongside recon-

struction results from ST-SOFTS, Vanilla SOFTS, 

STS-DGNN, and LI. Notably, the coordinate distri-

bution of ST-SOFTS aligns more closely with the 

original trajectory than competing methods. This 

empirically demonstrates its superiority in preserv-

ing both spatial accuracy and motion smoothness 

during complex maneuvers. 

 

The computational efficiency of various methods is 

presented in Table 3. Traditional approaches, lever-

aging simplistic computational logic, exhibit per-

batch processing times (for 1,000 vehicles) below 50 

ms — significantly faster than deep learning coun-

terparts. Though their parameter counts are less rel-

evant to practical performance evaluation, this speed 

advantage is notable. As a lightweight deep learning 

framework, ST-SOFTS incurs a processing latency 

of 72 ms per batch. While this exceeds the speed of 

traditional methods, it remains substantially lower 

than STS-DGNN (125 ms) and TrajectoFormer (210 

ms), demonstrating a robust balance between recon-

struction accuracy and computational efficiency. 

Notably, the low latency of traditional methods 

comes at the expense of reconstruction fidelity. 

Their trajectories lack physical plausibility in com-

plex scenarios, failing to meet the requirements of 

real-world applications — a trade-off effectively ad-

dressed by ST-SOFTS through its optimized archi-

tectural design. 

As shown in Table 4, the experimental results indi-

cate that the three innovative modules of ST-SOFTS 

synergistically drive performance improvements: 

removing the spatial weighting mechanism (-SW) 

leads to a 14.6% increase in NGSIM’s MSEpos and a 

17.0% increase in HighD’s MAEvel, demonstrating 

that dynamic weights of neighboring vehicles are in-

dispensable for spatiotemporal dependency 
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modeling; removing spatiotemporal constraints (-

SC) causes an SCR decrease of 9.1% and a 𝜎𝑣 in-

crease of 29.3%, indicating that explicit integration 

of kinematic constraints significantly enhances tra-

jectory rationality; when simplifying the spatiotem-

poral embedding layer to a single temporal feature (-

STF), CQSkyeye’s MAEvel increases by 17.5%, val-

idating the necessity of joint spatiotemporal encod-

ing for complex scenarios. When both the spatial 

weighting mechanism (SW) and spatiotemporal 

constraints (SC) are removed (-SW & TC), the per-

formance degradation is more pronounced than that 

of single-module removals. This confirms the syner-

gistic effect between SW and TC, where their joint 

action is critical to maintaining the model’s recon-

struction accuracy and spatial consistency. 

 

 
Fig. 4. Schematic Illustration of Lane-Changing Trajectory Reconstruction by Different Methods 

 

Table 3. Parameter Counts and Per-Batch Computational Times of Different Methods 
Method Parameter Count (Million) Per-Batch Time (ms, 1000 Vehicles) 

ST-SOFTS 3.8 72 

SOFTS 3.5 68 

STS-DGNN 8.7 125 

TrajectoFormer 15.2 210 

TCN-SA 2.0 61 
KF - 45 

CSI - 38 

LI - 29 

 

Table 4. Ablation Study Configurations and Results 
Ablation  

Configuration 

NGSIM 

MSEpos 

HighD 

MAEvel 

CQSkyeyeX 

SCR (%) 

Full Model 0.89 0.88 88.7 
-SW 1.02 (+14.6%) 1.03 (+17.0%) 83.2 (-6.2%) 

-SC 0.95 (+6.7%) 0.97 (+10.2%) 80.5 (-9.3%) 

-STF 1.08 (+21.3%) 1.01 (+14.8%) 81.9 (-7.7%) 
-SW & TC 1.22 (+37.1%) 1.16(+31.8%) 74.3(-16.2%) 
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Experimental results demonstrate that although tra-

ditional methods are computationally efficient, their 

reliance on single-vehicle modeling and uncon-

strained optimization limits performance in complex 

traffic scenarios. They fail to meet requirements for 

both accuracy and physical plausibility. By integrat-

ing multi-vehicle spatiotemporal interaction model-

ing (via spatial-weighted core aggregation) and ex-

plicit constraint optimization (via spatiotemporal 

joint loss), ST-SOFTS achieves position error reduc-

tions of 27%, 23%, and 17% on NGSIM, HighD, 

and CQSkyeyeX, respectively, while increasing 

safety compliance rates by 14%- 18%. These find-

ings validate the effectiveness of the centralized spa-

tiotemporal feature fusion framework. 

The linear complexity design of ST-SOFTS results 

in a processing time one-third that of Transformer-

based models for large-scale data, offering a viable 

solution for real-time applications in intelligent 

transportation systems. Ablation experiments fur-

ther confirm that the three innovative modules ex-

hibit synergistic effects — each is indispensable to 

the algorithm’s robustness and generalization capa-

bility, laying a solid foundation for its practical util-

ity. 

5. Conclusion 

To address the core challenges of low-frequency 

sampling and spatiotemporal sparsity in existing ve-

hicle trajectory datasets, this study proposes ST-

SOFTS — a centralized spatiotemporal-enhanced 

trajectory reconstruction algorithm. By improving 

the SOFTS framework, it achieves high-frequency 

reconstruction of multi-vehicle trajectories. The al-

gorithm constructs a three-level architecture: spatio-

temporal embedding — weighted aggregation — 

constraint optimization. Key components include: 

Spatiotemporal embedding layer: Encodes inter-

vehicle spatiotemporal dependencies via dynamic 

proximity weighting; 

Spatial-weighted core aggregation module: Ena-

bles efficient spatiotemporal feature fusion with lin-

ear complexity; 

Spatiotemporal constraint optimization layer: 

Enhances trajectory physical plausibility by embed-

ding velocity smoothness and safety distance con-

straints. 

Experiments on three representative datasets — 

NGSIM, HighD, and CQSkyeyeX — demonstrate 

that ST-SOFTS significantly outperforms competi-

tors in reconstruction accuracy, spatiotemporal 

rationality, and computational efficiency: position 

mean squared error MSEpos is reduced by 41%–58% 

compared to traditional interpolation methods and 

17%–27% relative to state-of-the-art deep learning 

models; safety compliance rates increase by 14%–

18%, the standard deviation of velocity change rates 

𝜎𝑣  decreases by 27%–38%; parameter count is re-

duced by over 50%, and the algorithm supports real-

time processing of tens of thousands of vehicle tra-

jectories. 

Ablation studies validate the necessity of the spatio-

temporal weighting mechanism, constraint loss, and 

joint embedding layer, confirm the synergistic ef-

fects of the algorithm’s innovative modules. This es-

tablishes a robust and efficient solution for high-fi-

delity trajectory reconstruction in intelligent trans-

portation systems that addresses critical challenges 

in sparse trajectory data processing. 

This study introduces an accuracy-efficient solution 

for high-frequency reconstruction of low-frequency 

vehicle trajectories, with engineering value manifest 

in supplying high-quality data inputs for autono-

mous driving simulation, enabling microscopic traf-

fic flow modeling, and facilitating safety assessment 

in transportation systems.  

This study introduces an accurate and efficient solu-

tion for high-frequency reconstruction of low-fre-

quency vehicle trajectories, with engineering value 

manifested in three aspects: supplying high-quality 

data inputs for autonomous driving simulation, ena-

bling microscopic traffic flow modeling, and facili-

tating safety assessment in transportation systems. 

In real-world intelligent transportation systems 

(ITS), these applications translate to tangible im-

provements across critical operational workflows. 

For instance, in connected vehicle (CV) networks, 

data transmission latency and bandwidth constraints 

frequently result in sparse trajectory updates, creat-

ing “temporal blind spots” of 0.5-1.0 seconds be-

tween consecutive data points. These gaps pose sig-

nificant risks for autonomous vehicle (AV) decision 

systems, as sudden lane changes or hard braking by 

adjacent vehicles may go undetected. ST-SOFTS 

addresses this by functioning as a real-time data aug-

mentation module with sub-50 ms processing la-

tency — its spatial-weighted core aggregation dy-

namically captures inter-vehicle proximity and tem-

poral continuity. By filling in missing spatiotem-

poral points with physically plausible trajectories, 

the model ensures RSUs maintain situational 
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awareness horizon, reducing AV emergency braking 

events compared to systems relying on raw sparse 

data. In traffic management centers, congestion pre-

diction models traditionally struggle with low-fre-

quency input data, which blurs the distinction be-

tween gradual speed reductions (normal flow) and 

abrupt decelerations (incipient congestion). ST-

SOFTS’ ability to generate physically consistent 

high-frequency trajectories (20-50 Hz) resolves this 

ambiguity: its spatiotemporal constraint optimiza-

tion layer enforces velocity smoothness and captures 

microscopic interactions. Additionally, for vehicle-

to-everything (V2X) communication testbeds, ST-

SOFTS-derived trajectories provide a cost-effective 

alternative to high-frequency sensor deployments, 

enabling realistic simulation of multi-vehicle inter-

action scenarios without relying on expensive Li-

DAR or radar arrays. 

Despite its advantages, ST-SOFTS has three key 

limitations that guide future research directions: 

(1)Limited adaptability to mixed vehicle types: The 

current physical constraints are calibrated for pas-

senger vehicles, which are the sole vehicle type in 

the datasets. For heavy-duty vehicles or large com-

mercial vehicles, these fixed thresholds may lead to 

suboptimal reconstruction accuracy or an increased 

proportion of physically implausible trajectories. (2) 

Sensitivity to ultra-low sampling rates: While the 

model is optimized for 5 Hz input, its performance 

degrades when the input sampling rate falls below 5 

Hz. Because the spatiotemporal fusion layer relies 

on at least 3-5 consecutive input points to model 

temporal trends, insufficient data breaks this conti-

nuity assumption, leading to increased interpolation 

uncertainty. (3) Lack of road network constraint in-

tegration: ST-SOFTS currently does not incorporate 

road structural information (e.g., lane width, curve 

radius, intersection geometry) or traffic rules. This 

gap can result in reconstructed trajectories that are 

physically plausible but violate real-world road rules. 

Future research may focus on three targeted direc-

tions, directly addressing the above limitations while 

expanding application scenarios: (1) Developing a 

vehicle-type-aware dynamic constraint framework 

to replace fixed thresholds, adapting acceleration 

limits and safety distances based on vehicle cate-

gory, enhancing adaptability to mixed-vehicle traf-

fic; (2) Designing a multi-scale temporal interpola-

tion module to improve robustness to ultra-low sam-

pling rates, which supplements sparse input points 

with historical motion trend features to maintain 

temporal continuity and reduce interpolation uncer-

tainty; (3) Integrating HD map and road rule encod-

ing into the spatiotemporal fusion layer. Incorporat-

ing lane geometry, curve radius, and traffic re-

strictions to ensure reconstructed trajectories com-

ply with both physical laws and real-world road 

rules, and further extending to complex urban sce-

narios by fusing multimodal data. These advance-

ments would foster a full-chain upgrade of intelli-

gent transportation systems by addressing unmet 

challenges in mixed-vehicle, ultra-low-sampling, 

and complex urban environments. 

 

Acknowledgements 

We would like to thank Professor Xu Jin's team from 

Chongqing Jiaotong University for providing the 

CQskyeyeX dataset for algorithm validation 

 

References 

1. Amin, F., Gharami, K., & Sen, B. (2024). TrajectoFormer: Transformer-based trajectory prediction of 

autonomous vehicles with spatio-temporal neighborhood considerations. International Journal of Com-

putational Intelligence Systems, 17(1), 87. https://doi.org/10.1007/s44196-024-00410-1 

2. Biszko, K., Oskarbski, J., & arski, K. (2024). Impact of different car-following models on estimating 

safety and emissions on signal-controlled intersections using microscopic simulations. Archives of 

Transport, 72(4), 43-73. https://doi.org/10.61089/aot2024.eb2hfe27  

3. Gu, M., Su, Y., Wang, C., & Guo, Y. (2024). Trajectory planning for automated merging vehicles on 

freeway acceleration lane. IEEE Transactions on Vehicular Technology, 73(11), 16108–16124. 

https://doi.org/10.1109/TVT.2024.3430291 

4. Han, L., Chen, X.-Y., Ye, H.-J., & Zhan, D.-C. (2024). SOFTS: Efficient multivariate time series fore-

casting with series-core fusion (No. arXiv:2404.14197). arXiv. 

https://doi.org/10.48550/arXiv.2404.14197 

5. He, S., Shen, L., Wu, Q., & Yuan, C. (2024). A certified cubic B-spline interpolation method with tan-

gential direction constraints. Journal of Systems Science and Complexity, 37(3), 1271–1294. 



96 

 

Chen, R., Ren, X., Ma, Q. 

Archives of Transport, 74(2), 83-97, 2025 

 

 

https://doi.org/10.1007/s11424-024-2420-0 

6. Ip, A., Irio, L., & Oliveira, R. (2021). Vehicle trajectory prediction based on LSTM recurrent neural 

networks. 2021 IEEE 93rd Vehicular Technology Conference (Vtc2021-Spring), 1–5. 

https://doi.org/10.1109/VTC2021-Spring51267.2021.9449038 

7. Jiang, Y., Zhu, B., Yang, S., Zhao, J., & Deng, W. (2023). Vehicle trajectory prediction considering 

driver uncertainty and vehicle dynamics based on dynamic bayesian network. IEEE Transactions on 

Systems, Man, and Cybernetics: Systems, 53(2), 689–703. https://doi.org/10.1109/TSMC.2022.3186639 

8. Jiang, J., Zuo, Y., Xiao, Y., Zhang, W., & Li, T. (2024). STMGF-Net: a spatiotemporal multi-graph 

fusion network for vessel trajectory forecasting in intelligent maritime navigation. IEEE Transactions 

on Intelligent Transportation Systems, 25(12), 21367-21379. 

https://doi.org/10.1109/TITS.2024.3465234 

9. Lei, J., Xun, Y., He, Y., Liu, J., Mao, B., & Guo, H. (2024). Flexible Multi-Channel Vehicle Trajectory 

Prediction Based on Vehicle-Road Collaboration.Proceedings - IEEE Global Communications Confer-

ence, GLOBECOM 2024 IEEE Global Communications Conference, GLOBECOM 2024, December 8, 

2024 - December 12, 2024, Cape Town, South africa. 

10. Li, F.-J., Zhang, C.-Y., & Chen, C. L. P. (2023). STS-DGNN: Vehicle trajectory prediction via dynamic 

graph neural network with spatial–temporal synchronization. IEEE Transactions on Instrumentation and 

Measurement, 72, 1–13. https://doi.org/10.1109/TIM.2023.3307179 

11. Li, H., & Yu, L. (2025). Prediction of traffic accident risk based on vehicle trajectory data. Traffic Injury 

Prevention, 26(2), 164–171. https://www.tandfonline.com/doi/abs/10.1080/15389588.2024.2402936 

12. Li, Q., Ou, B., Liang, Y., Wang, Y., Yang, X., & Li, L. (2023). TCN-SA: A social attention network 

based on temporal convolutional network for vehicle trajectory prediction. Journal of Advanced Trans-

portation, 2023, 1–12. https://doi.org/10.1155/2023/1286977 

13. Liu, Z., Fang, J., Tong, Y., & Xu, M. (2020). Deep learning enabled vehicle trajectory map-matching 

method with advanced spatial–temporal analysis. IET Intelligent Transport Systems, 14(14), 2052–2063. 

https://doi.org/10.1049/iet-its.2020.0486 

14. Lin, X., Tan, C., & Lin, X. (2024). Short term road network Macroscopic Fundamental Diagram param-

eters and traffic state prediction based on LSTM. Archives of Transport, 71(3), 107-126. 

https://doi.org/10.61089/aot2024.qxx9rh86  

15. Quddus, M., & Washington, S. (2015). Shortest path and vehicle trajectory aided map-matching for low 

frequency GPS data. Transportation Research Part C: Emerging Technologies, 55, 328–339. 

https://doi.org/10.1016/j.trc.2015.02.017 

16. Rathore, P., Kumar, D., Rajasegarar, S., Palaniswami, M., & Bezdek, J. C. (2019). A scalable framework 

for trajectory prediction. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3860–3874. 

https://doi.org/10.1109/TITS.2019.2899179 

17. Reis, J., Yu, G., & Silvestre, C. (2023). Kalman-based velocity-free trajectory tracking control of an 

underactuated aerial vehicle with unknown system dynamics. Automatica, 155, 111148. 

https://doi.org/10.1016/j.automatica.2023.111148 

18. Singh, D., & Srivastava, R. (2022). Graph neural network with RNNs based trajectory prediction of 

dynamic agents for autonomous vehicle. Applied Intelligence, 52(11), 12801–12816. 

https://doi.org/10.1007/s10489-021-03120-9 

19. Waddell, J. M., Remias, S. M., Kirsch, J. N., & Trepanier, T. (2020). Utilizing low-ping frequency ve-

hicle trajectory data to characterize delay at traffic signals. Journal of Transportation Engineering, Part 

A: Systems, 146(8), 4020069. https://doi.org/10.1061/JTEPBS.0000382 

20. Wang, J., Liang, Y., Tang, J., & Wu, Z. (2024). Vehicle trajectory reconstruction using lagrange-inter-

polation-based framework. Applied Sciences, 14(3), 1173. https://doi.org/10.3390/app14031173 

21. Wang, T., Fu, Y., Cheng, X., Li, L., He, Z., & Xiao, Y. (2025). Vehicle Trajectory Prediction Algorithm 

Based on Hybrid Prediction Model with Multiple Influencing Factors. Sensors, 25(4). 

https://doi.org/10.3390/s25041024  

22. Wang, Y., Gao, S., Wang, Y., Wang, P., Zhou, Y., & Xu, Y. (2021). Robust trajectory tracking control 



Chen, R., Ren, X., Ma, Q. 

Archives of Transport, 74(2), 83-97, 2025 

97 

 

 

for autonomous vehicle subject to velocity-varying and uncertain lateral disturbance. Archives of 

Transport, 57(1), 7-23. https://doi.org/10.5604/01.3001.0014.7480  

23. Yang, X., Liang, G., Chen, Y., Liu, Y., Chen, Z., Yang, X., & Wang, Z. (2025). Research on the Spati-

otemporal Evolution of Disturbed Through Vehicles at Signalized Intersections Based on Trajectory 

Data. Journal of Transportation Engineering, Part A: Systems, 151(7), 04025040. 

https://doi.org/10.1061/JTEPBS.TEENG-9029 

24. Yang, G., Wang, Z., Xu, H., & Tian, Z. (2018). Feasibility of using a constant acceleration rate for 

freeway entrance ramp acceleration lane length design. Journal of Transportation Engineering, Part A: 

Systems, 144(3), 6017001. https://doi.org/10.1061/JTEPBS.0000122 

25. Youssef, T., Zemmouri, E., & Bouzid, A. (2023). STM-GCN: a spatiotemporal multi-graph convolu-

tional network for pedestrian trajectory prediction. Journal of Supercomputing, 79(18). 

https://doi.org/10.1007/s11227-023-05467-x 

26. Zhang, Q., Bhattarai, N., Chen, H., Xu, H., & Liu, H. (2023). Vehicle trajectory tracking using adaptive 

kalman filter from roadside lidar. Journal of Transportation Engineering, Part A: Systems, 149(6), 

4023043. https://doi.org/10.1061/JTEPBS.TEENG-7535 

 

Appendix A: Parameter Settings of ST-SOFTS 

 

Parameter 

Category 
Parameter Name Theoretical Basis 

Tuned Value 

Range 

Final Selected 

Value 

Core Model Pa-

rameters 

Embedding Dimension 
Feature representation capability vs. 

efficiency 

32, 64, 128, 256, 

512 
64 

Spatial Proximity Range 
Average inter-vehicle distance in da-
tasets 

10 m, 15 m, 20 
m, 25 m 

20 m 

Number of STAR Layers 
Deep network gradient preservation 

(residual links) 
2, 3, 4 3 

MLP Hidden Layer Di-

mension 

Matching embedding dimension for 

feature transformation 
64, 128 64 

Constraint Loss 

Parameters 

Temporal Smoothness 
Loss Weight (wₜ) 

Prioritizing physical plausibility 0.3, 0.4, 0.5, 0.6 0.4 

Spatial Safety Loss 

Weight (wₛ) 
 0.4, 0.5, 0.6, 0.7 0.6 

Training Parame-
ters 

Initial Learning Rate Adam optimizer standard setting 
1e-4, 5e-4, 1e-3, 

5e-3 
1e-3 

Batch Size 
Memory efficiency vs. gradient sta-
bility 

64, 128, 256 128 

Max Epochs 
Avoiding overfitting (early stopping 

trigger) 
150, 200, 250 200 

Early Stopping Patience Stabilizing validation loss 5, 10, 15 10 

 


