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Abstract: 

The optimal vehicle (VSP) and crew (CSP) scheduling problems solving in urban public transportation involves as-
signing timetabled trips to daily vehicle tasks, called blocks, and next to daily driver tasks, called duties. The aim is to 

minimize the number of vehicles and drivers. This maximizes usage of the both assets, makes the schedules more 

convenient for vehicle operations and drivers, and as a result mitigates possible delays, and fits into the legal require-
ments for the drivers' working time. The scheduling can be done either sequentially or simultaneously. In the former, 

vehicles are scheduled first, then drivers based on an already constructed vehicle blocks. Whereas in the latter, vehi-

cles and drivers are scheduled at the same time, thus integrated (VCSP). As for the solution methods for the VCSP the 
Evolutionary Algorithms (EA) play a crucial role in addressing this complex challenge. Moreover, recent publications 

point out that metaheuristics, in particular the EA, are widely and successfully used in both the sequential and simul-

taneous solution approaches. The integrated scheduling of vehicles and rivers requires much longer computational 
time, which often cannot be accepted in practice for the VSP and CSP are usually solved separately by different 

institutions, i.e., the public transport authority (PTA) and the public transport operator (PTO), respectively. Alterna-

tively, in the sequential approach, that is less computationally demanding, the influence of a solution of the VSP on a 
solution of the CSP can also be included. To solve sequentially the CSP taking into account an already solved the VSP 

and its characteristics (e.g., multiple depots, electric vehicles (EVs)), a specific and original EA is proposed in this 

paper. The algorithm divides vehicle blocks into pieces of work to be assigned to drivers’ duties. The pieces of work 
can be composed of the entire vehicle blocks as well as their parts, for the algorithm can divide them according to a 

set of proposed rules. The algorithm was tested on a real-world databases of public transport systems of the three 

large Polish cities. The results were compared with those obtained manually by a team of experienced transport plan-
ners. The crew schedules obtained using the algorithm were comparable or even better than those prepared manually 

and reached within significantly shorter time. 
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1. Introduction 

Providing bus transport services requires solving 

several planning problems such as network design, 

line planning, timetabling, vehicle scheduling, crew 

scheduling, and crew rostering. Problems are on all 

three levels of management. And in practice, these 

problems are solved in a sequential manner since 

solving them in one integrated step is too complex 

(Perumal et al., 2022). The two of the listed above 

problems are of scheduling nature. Optimal schedul-

ing in urban public transport, specifically the vehicle 

(VSP) and crew scheduling (CSP), involves effi-

ciently assigning trips to daily vehicle tasks, called 

blocks, and based on this assigning tasks or pieces 

of work to daily driver tasks, called duties. This two 

scheduling problems are solved either sequentially – 

first vehicles then crews based on an already con-

structed vehicle tasks, or simultaneously as partially 

or fully integrated vehicle and crew scheduling 

problem (VCSP). Both approaches have practical 

background in urban transport planning process, 

however, the sequential approach applied to im-

prove operational efficiency is pointed out to be one 

of the promising ways to solve the VCSP (Pan et al., 

2021). Evolutionary algorithms (EAs) play a crucial 

role in addressing this complex challenge, as seen in 

various research papers (Kisielewski, 2019; Mertens 

et al., 2023). Recent publications show that me-

taheuristics, in particular the EAs, can be success-

fully implemented to solve the sequential or simul-

taneous formulations of the scheduling problems. 

The complexity of the listed above planning prob-

lems, including the VSP, CSP and especially VCSP, 

increases with fast-growing public transport sector 

undergoing rapid technological changes, e.g., the in-

clusion into fleets of an alternative powertrain vehi-

cles, especially electric ones (EVs), and organiza-

tional ones too, e.g., global trends such as zero emis-

sion or smart cities, but also shortage of drivers on 

the labor market. Also rapidly growing driver sala-

ries in developed and developing countries plays a 

role here. As a result, the scheduling problems be-

come harder to solve especially for real-world in-

stances. The VSP when considering electric vehicles 

(EVSP), in contrast to the traditional, internal com-

bustion ones, has to cover such aspects as the much 

more limited range or required recharging time. 

Here, the type of batteries used place a role. If they 

are high energy ones (e.g., NMC or LFP), which are 

charged primarily at depots with plug-in chargers, 

but allow for longer ranges, or low energy batteries 

(e.g., LTO), which require overnight plug-in charg-

ing, allow for shorter ranges, but gives opportunity 

to recharge on the route via pantographs. This fur-

ther influences the CSP that in turn has to cover such 

aspects as breaks within duties that have to stay in 

accordance with the drivers’ working time law reg-

ulations or transport providers/operators’ internal re-

strictions, and have to be planned in so called social 

points (e.g. equipped with toilets), but also adjusted 

to charging times (e.g., minimum required or long 

enough time to recharge traction batteries up to ex-

pected level), and charging points (location of charg-

ing stations). 

The above-mentioned problems require an increas-

ing effort from transport organizers and operators to 

solve them, e.g., optimally plan vehicle and crew 

schedules sequentially or simultaneously. The 

VCSP is the subject of a lot of research, and in the 

recent years gained a significant interest. The VCSP 

is an NP-hard combinatorial optimization problem, 

and in the case of real-world instances, the problem 

is even more complex. The real-world instances of 

the problem cover many thousands of line trips and 

a few thousands of driver duties to be scheduled on 

a daily basis. Moreover, in the real-world public 

transport systems there is a large number of decision 

variables and various constraints. All of that makes 

manual scheduling of vehicles and crews very diffi-

cult and time-consuming. In this paper we consider 

the sequential formulation of the VCSP with numer-

ous raised in practice constraints, especially those 

concerning breaks in vehicle schedules influencing 

further the breaks in driver duties. Such formulation 

can handle the real-world instances of the VCSP, in-

cluding the MD-VCSP. 

The objective function of the VCSP should take into 

account both vehicle and crew aspects, especially 

the economical ones. Thus, the overall cost of using 

the two assets, i.e., vehicles and drivers, is mini-

mized (Pan et al., 2021) leading to the efficiency of 

the entire public transport systems in which the min-

imum number of vehicles and drivers required is es-

sential. And, as mentioned above, there are a large 

number of scientific works devoted to the VCSP, a 

significant part of them presents solutions that were 

tested on small transport networks with at most a 

few hundred line trips or driver duties (Ge et al., 

2024). Meanwhile, in practice, even in a medium 

size cities, the number of line trips can reach several 
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thousand per day. Practical issues also require taking 

into account factors such as more than one depot, the 

possibility of changing lines within vehicle blocks 

and between blocks within drivers duties consider-

ing the given predefined preferences, fleet heteroge-

neity, and limitations related to electric vehicle 

charging infrastructure. In the literature such a prob-

lem is known as Multi Depot- Multi Type Vehicle 

Scheduling Problem (MD-MTVSP). 

In addition, most authors consider only one or two 

optimization criteria in the objective function. 

Whereas an algorithm, the evolutionary one, pro-

posed in this paper uses a multi-criteria objective 

function to assess particular solutions, parent and 

offspring ones, in the consecutive populations, i.e., 

in the selection process. There are six criteria includ-

ing the number of driver duties, overall duration of 

breaks between line trips, number of line trips not 

included into driver duties, number of so called de-

generated (short) duties, deviation of the actual du-

ration of duties in relation to the expected one, and 

number of vehicle changes within a single duty. The 

listed criteria or aspects of the VCSP are also cov-

ered by the proposed mathematical model of the 

CSP solved as a secondary to the VSP (the sequen-

tial formulation). The developed heuristic makes it 

possible to obtain a solution in the form of a set of 

driver duties in an acceptable by practitioners time, 

even for very large instances. The developed algo-

rithm was verified and validated using three real ur-

ban transport databases. The test results showed that 

the algorithm can be an effective tool for planning 

public transport even in large urban agglomerations. 

The remainder of the paper is organized as follows. 

In the next section, related works from the literature 

are briefly summarized and research gaps are high-

lighted. In Section 3, the research problem is defined 

and binary liner model formulated. Then, the pro-

posal of the heuristic algorithm is presented in Sec-

tion 4. The description of real-world instances used 

for computational experiments and the obtained re-

sults are provided in Section 5. Finally, in Section 6, 

conclusions are drawn and proposals of future works 

are given. 

 

2. Literature Review 

The vehicle and crew scheduling problems in public 

transport can be approached separately (VSP and 

CSP, accordingly) or jointly (VCSP) through se-

quential (meaning combined to same degree, i.e., 

partially) and integrated optimization (meaning fully 

combined) (Shen and Li, 2023). Each offering 

unique advantages, but also having significant draw-

backs. Both approaches, i.e., the sequential and inte-

grated one, aim to enhance overall operational effi-

ciency and service quality, yet they differ in flexibil-

ity, execution time and outcomes. Moreover, both 

aim to minimize operational fixed and variable costs 

of using the two assets, i.e., vehicles and drivers 

(crews), while maintaining expected service quality 

(Mertens et al., 2024). Integrated methods often 

achieve the above by considering multiple planning 

tasks simultaneously, leading to solutions reducing 

vehicle and crew costs at the same time (Mertens et 

al., 2024; Pan et al., 2021; Shen and Li, 2023). Such 

solutions show so called Pareto-optimality feature 

(Liu et al., 2023), which leads to the multicriteria op-

timization of the VCSP (Kisielewski, 2019), and the 

VSP and CSP as well (Wang et al., 2022). In the lat-

ter, a bi-level multi-objective programming model 

solved by a multi-objective particle swarm algo-

rithm based on the ε-constraint processing mecha-

nism is presented. Authors call it a collaborative 

scheduling of vehicles (first level) and drivers (sec-

ond level). As for the service quality, both ap-

proaches ensure that schedules are reliable, and meet 

passengers’ needs but also those of transport provid-

ers/operators, as well. As for the latter they have to 

fulfill strict law as well as company-specific regula-

tions concerning drivers working time when sched-

uling their tusks. It includes breaks to be incorpo-

rated into shifts, as well. Mertens et al. (2023) state 

that legal, union-related, and company-defined reg-

ulations vary significantly regarding each problem 

specification. The detailed considerations on the 

drivers’ working and break time constraints in the 

CSP can be found in works of Kletzander and Mus-

liu (2020), and Boyer et al. (2018). But, however, in 

both researches the constraints in question are ana-

lyzed very deeply, the proposed solution methods 

have been applied to very limited instances of the 

CSP, i.e., only 12 shifts and 25 lines (1150 line 

trips), respectively. Integrated approaches, however, 

tend to enhance the service quality aspect more ef-

fectively taking into account interdependencies 

among tasks (Mertens et al., 2024). Both approaches 

also address the inherent complexity of public 

transport planning (Mertens et al., 2024; Shen and 

Li, 2023). While sequential approaches break down 

tasks, integrated ones manage complexity through 
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advanced algorithms, such as evolutionary ones, 

which allow planning all tasks at once (Mertens et 

al., 2024). Despite these similarities, integrated op-

timization often yields superior solutions by lever-

aging synergy between vehicle and crew scheduling 

(Mertens et al., 2024). Whereas sequential optimiza-

tion, may struggle with efficiency (a significantly 

lower computational time) in larger public transport 

networks, especially when applied in practice (Pe-

rumal et al., 2021; Perumal et al., 2022). The two 

approaches can also be viewed as quite flexible 

(Steinzen et al., 2010). The integrated approach 

when considering mathematical modelling (Pan et 

al., 2021), whereas the sequential one, when appli-

cation stage is taken into account. Thus, while the 

integrated optimization can provide superior solu-

tions by considering interdependencies among vehi-

cle and crew tasks, sequential one remains valuable 

for their simplicity and ease of implementation. And 

even though an integrated consideration of multiple 

tasks leads to an overall improved solutions, i.e., sig-

nificantly reducing operational costs while main-

taining high service quality, it further increases the 

complexity of an already hard-to-solve planning 

problems (Mertens et al., 2024). The detailed and 

comprehensive comparison of the VSP, CSP and 

VCSP including their integrated and sequential for-

mulations is presented in (Perumal et al., 2022; Shen 

and Li, 2023). Perumal et al. (2021) also state that 

the first complete integration of the VCSP for prac-

tical size instances and comparison between the in-

tegrated and sequential approaches were given by 

Freling et al. (2003). 

The solution methods (algorithms solving mathe-

matical models of the VSP, CSP and VCSP) can be 

exact or approximate (Peña et al., 2022). For in-

stance, Shen and Li (2023) employ minimum cost 

flow formulation and integer linear programming to 

achieve exact optimal solutions of the electric vehi-

cle and crew scheduling problem (EVCSP). The two 

another applications of the exact methods to solve 

the CSP are those of Esquivel-González et al. (2023) 

and Öztop et al. (2017). In the former, the graph 

based binary linear programming (BLP) is used to 

model the problem and the general purpose solver to 

find its solution. The instance of the problem solved 

is 5500 line trips, which is quite large. But the trips 

are clustered first into eight groups each for one par-

ticular depot, and further for vehicle types giving 49 

classes in total. The problem is solved separately for 

each class, which reduces its instance significantly. 

Whereas in the latter, the problem is formulated as a 

BLP too, but solved using proposed by the authors 

the iterative valid inequality generation scheme and 

one of the general purpose solvers. Authors con-

clude that the proposed approach is quite effective in 

terms of computational time for instances with up to 

120 tasks. As a result, however, the exact ap-

proaches are computationally intensive, thus, typi-

cally only feasible for smaller problem instances, as 

highlighted in (Mertens et al., 2024). However, Ge 

et al. (2024) point out that an integrated problems in 

public transport, that years ago had to be tackled by 

means of specialized heuristics due to their inherent 

problem complexity, now can be solved to optimal-

ity by means of standard solvers. 

As for the approximate approaches heuristic and me-

taheuristic algorithms are involved. For instance, 

mentioned above Mertens et al. (2024) propose the 

mutation-based evolutionary scheme, which bal-

ances computational efficiency with solution qual-

ity, effectively handling problems even for large 

transport networks. In turn, Sistig and Sauer (2023) 

focus on metaheuristic approaches, particularly the 

Adaptive Large Neighborhood Search (ALNS), to 

address the integrated EVCSP and emphasize the 

importance of crew scheduling constraints influence 

on an operational costs. 

And finally, Amberg and Amberg (2023) state that 

for vehicle and crew scheduling the two concepts are 

intensively studied to reduce resource usage and 

minimize operational costs. They are integrated 

scheduling of vehicles and drivers, and scheduling 

of this two resources with simultaneous trip shifting. 

The latter can lead to the further reduction of the re-

source usage comparing with pure cost-efficient in-

tegrated scheduling. And the trip shifting is not the 

only one extinction of the VCSP proposed in the lit-

erature. Mertens et al. (2024), who propose men-

tioned above an adaptive modular evolutionary ex-

tendable scheme to solve bus timetabling and sched-

uling problems, integrate them with crew scheduling 

as a third planning step. Thus, introduce a threefold 

integration. A possibility of a such extension con-

firm Ge et al. (2024), who point out that nowadays 

additional features can be incorporated into vehicle 

and crew scheduling problem formulations to make 

them richer. 

Summing up the above analysis of the previous 

works on the VSP, CSP, and especially VCSP, it can 
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be stated that while the exact algorithms provide pre-

cise solutions, their complexity limits the applicabil-

ity. In contrast, the approximate, heuristic and me-

taheuristic methods offer flexibility and efficiency, 

making them suitable for larger and more complex 

sets of tasks to be scheduled (Peña et al., 2022). 

Moreover, experimental results show that the accu-

racy of heuristic methods can be very high. The can 

lead to close to the optimum solutions, while captur-

ing all the problem’s characteristics and the same 

time (Andrade-Michel et al., 2021). 

And despite the commonly recognized fact that ve-

hicle schedules, including those of electric ones, are 

essential for the crew arrangement (Tang et al., 

2019), and the large number of publications related 

to the sequential optimization of the VCSP, there is 

still a lack of papers which tackle the real-world in-

stances of the problem taking into account its com-

plexity. The complexity covering constraints which 

represent expectations of transport organizers and 

providers/operators, and including drivers and elec-

tric buses aspects as well. And at the solution stage 

algorithms dedicated to instances covering a few 

thousands of line trips or even more than 10 000. In 

this paper, we propose a metaheuristic (evolution-

ary) algorithm to tackle a real-world instances of the 

CSP solved sequentially along with the EVSP, i.e., 

including its already obtained solution. The pro-

posed approach allows for solving even very large 

instances of the problem leading, in a reasonable 

computational time, to solutions of acceptable qual-

ity and better than manual ones. 

 

3. Problem Definition and Mathematical For-

mulation 

In general, the considered problem is to determine 

the assignment of vehicle trips to driver duties satis-

fying numerous labor regulations. It comes directly 

from this definition that to solve such a problem it is 

necessary to combine it with the VSP. It can be done 

by an integration of these two problems, leading to 

the Vehicle-Crew Scheduling Problem (VCSP) or 

by sequencing them, i.e., solving the CSP as a sec-

ond and incorporating an already existing solution 

of the VSP. Thus, vehicle trips, which constitute the 

solution of the VSP, are income data to the CSP and 

highly influence its solution. A sequence of trips to 

be covered by particular vehicles on a daily basis is 

forming the so called vehicle blocks. Similarly, a se-

quence of vehicle blocks as well as their parts to be 

covered by particular drivers on a daily basis consti-

tute driver daily duties, the so called duties. 

In particular, taking into account the above, the con-

sidered problem is to determine the assignment of 

vehicle blocks, if necessary, divided into parts ac-

cording to a set of predefined rules, to driver duties. 

All that based on such characteristics of each block 

or its part as starting and end times, and also loca-

tions being possible relief-points (including stops, 

terminuses, charging stations of the electric vehicles 

– EVs, and multiple depots). A searched solution 

must ensure that each entire vehicle block is covered 

exactly once, taking into account its parts, as well, 

and that each driver performs a feasible sequence of 

blocks or its parts – forming driver daily duties (Pe-

rumal et al., 2022). Thus, it constitutes the Multi-De-

pot Crew Scheduling Problem (MD-CSP) where, 

usually, the goal is to minimize the total generalized 

cost of driver duties including idle times, e.g., 

breaks, as well. 

The above defined CSP was formulated as a binary 

linear programming (BLP) mathematical model. 

The model is a combination of the connection-based 

network flow approach and the generalized assign-

ment problem (GAP). Such a combination was used 

by Beasley and Cao (1996) to propose the generic 

formulation of the CSP. However, their formulation 

was limited to one practical constraint only (skip-

ping mathematical ones), i.e., fixed start and finish 

times such that each crew does not exceed a limit on 

the total time it can spend working. Moreover, they 

associate a unit cost with a transition between two 

consecutive tasks only, omitting costs of particular 

tasks. Such an approach is valid if unit working costs 

of all crews (drivers) are exactly the same. If not, this 

assumption has to be relaxed, as done in the pro-

posed formulation. 

As for the sequential optimization of the CSP being 

secondary to the VSP we use the approach as in 

Simões et al (2021), i.e., from the integrated formu-

lation of the MD-VCSP, e.g., as in (Steinzen et al, 

2010), only a part of the objective function and con-

straints associated with a crew schedule are consid-

ered. 

The assumptions: 

− Vehicle blocks, if necessary, are divided into 

parts, within a pre-processing stage, according 

to a predefined rules of selecting appropriate 

driver relief-points. 
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− Start (earliest – 𝑒𝑖) and end (latest – 𝑙𝑖) times of 

particular tasks are given as an ordinal numbers 

representing time points (minutes) enumerated 

starting with some predefined beginning point, 

e.g., the earliest time of the first task during a 

day. While, the difference of these two ordinal 

numbers (𝑙𝑖 − 𝑒𝑖) for each one particular task, 

gives its duration in minutes, the difference 

( 𝑒𝑖 − 𝑙𝑖−1 ) for each two consecutive tasks, 

gives the duration of a break between them in 

minutes, as well. 

− Tasks are ordered and numbered in ascending 

according to their start time (𝑒𝑖), and as a sec-

ond level the duration from short to long ones, 

thus according to their end time (𝑙𝑖). 

− Drivers can start and end their work in different 

depots or relief-points. 

− Relief-points may be depots, terminuses, bus 

stops and, if the EVs are operated, recharging 

stations, as well. 

− Based on the above, the maximum number of 

available drivers can be represented by the pre-

defined cardinality of a set of driver duties 𝑆. 

− Having the VSP already solved the depots do 

not have to be included into the CSP, even 

though its multi-depot (MD-CSP) version is 

considered. This will be discussed in details 

later. 

The nomenclature used to define the optimization 

model is presented in Table 1.

 

Table 1. The optimization model nomenclature 
Indices 

𝑖, 𝑗 task, i.e., vehicle block or its part, 𝑖 = 1, … , |𝑇|, |𝑇| + 1 and 𝑖 < 𝑗, where 𝑖 = |𝑇| + 1 denotes a dummy task 

allowing to assign only one task 𝑖 to a given driver duty (𝑋𝑖 𝑗=|𝑇|+1 𝑠 = 1) 

(𝑖, 𝑗) connection arc that joins pair of tasks 

𝑠 driver duty, 𝑠 = 1, … , |𝑆| 

Sets 

𝐴 set of arcs, all or only feasible, when considering the CSP solution, resulting from the VSP feasible solution, 

i.e., entire vehicle blocks or, if partitioned, their parts, including dummy tasks, as well, (𝑖, 𝑗) 𝜖 𝐴 

𝑇 set of tasks, 𝑖 𝜖 𝑇 

𝑆 set of driver duties, 𝑠 𝜖 𝑆 

Parameters 

𝑏𝑖 vehicle block number task 𝑖 belongs to (tasks being parts of blocks have the same numbers, whereas tasks 

𝑗 = |𝑇| + 1, have the same block number as task 𝑖 on arc (𝑖, 𝑗)) [-] 

𝑏𝑚𝑎𝑥 maximum number of vehicle blocks assigned to a single driver duty [-] 

𝑏𝑡𝑚𝑖𝑛 minimum break/waiting time between two consecutive tasks on driver duty [min.] 

𝑏𝑡𝑚𝑎𝑥 maximum break/waiting time between two consecutive tasks on driver duty [min.] 

𝑐𝑡(𝑠) unit cost of work of a driver on duty s [monetary units/min.] 

𝑑𝑡𝑖 duration time of task 𝑖 [min.] 

𝑑𝑡𝑚𝑖𝑛 minimum duration time of a single driver duty [min.] 

𝑑𝑡𝑚𝑎𝑥 maximum duration time of a single driver duty [min.] 

𝐷𝑉𝐼𝑇 total driver's daily vehicle inspection time [min]. 

𝑒𝑖 earliest/start time of task 𝑖 [-] 

𝑙𝑖 latest/end time of task 𝑖 [-] 

𝑙𝑡𝑖 number of line trips covered by task 𝑖 [-] 

𝑙𝑡𝑚𝑖𝑛 minimum number of line trips assigned to a single driver duty [-] 

𝑀 constant, very large positive number [-] 

𝑤𝑡𝑖𝑗 waiting time of task (vehicle block/line trip) change on arc (𝑖, 𝑗) [min.] 

Variables 

𝑋𝑖𝑗𝑠 binary decision variable, 𝑋𝑖𝑗𝑠 = 1, if driver duty 𝑠 carries out task 𝑖 directly preceding task 𝑗, 0 otherwise 

𝑌𝑠 auxiliary binary variable, 𝑌𝑠 = 1, if driver duty 𝑠 is used in a schedule, 0 otherwise 
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Eq. (1) presents the objective function, whereas Eqs. 

(2)-(10) the constraints. 

Minimize: 

 

∑ ∑ (𝑑𝑡𝑖 + 𝑤𝑡𝑖𝑗)𝑐t(𝑠)𝑋𝑖𝑗𝑠

(𝑖,𝑗)∈𝐴𝑠∈𝑆

+ ∑ 𝐷𝑉𝐼𝑇𝑐t(𝑠)𝑌𝑠

𝑠∈𝑆

 

(1) 

 

subject to: 

 

∑ ∑ 𝑋𝑖𝑗𝑠

(𝑖,𝑗)∈𝐴𝑠∈𝑆

= 1, ∀𝑖 ∈ 𝑇 (2) 

 

∑ 𝑋𝑖𝑗𝑠

(𝑖,𝑗)∈𝐴

− ∑ 𝑋𝑗𝑖𝑠

(𝑗,𝑖)∈𝐴

= 0, ∀𝑖 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3) 

 

𝑀𝑌𝑠 − ∑ 𝑋𝑖𝑗𝑠

(𝑖,𝑗)∈𝐴

  ≥ 0, ∀𝑠 ∈ 𝑆 (4) 

 

𝑏𝑡𝑚𝑖𝑛 ≤ (𝑒𝑗 − 𝑙𝑖)𝑋𝑖𝑗𝑠 ≤ 𝑏𝑡𝑚𝑎𝑥 ,

∀𝑖, 𝑗 ∈ 𝑇, ∀𝑠 ∈ 𝑆 
(5) 

 

∑ 𝑋𝑖𝑗𝑠

(𝑖,𝑗)∈𝐴

≥ 𝑙𝑡𝑚𝑖𝑛   or    

∑ (𝑑𝑡𝑖 + 𝑤𝑡𝑖𝑗)𝑋𝑖𝑗𝑠

(𝑖,𝑗)∈𝐴

≥ 𝑑𝑡𝑚𝑖𝑛 ,      ∀𝑠 ∈ 𝑆 
(6) 

 

∑ (𝑑𝑡𝑖 + 𝑤𝑡𝑖𝑗)𝑋𝑖𝑗𝑠

(𝑖,𝑗)∈𝐴

≤ 𝑑𝑡𝑚𝑎𝑥 , ∀𝑠 ∈ 𝑆 (7) 

 

∑ 𝑏𝑖𝑋𝑖𝑗𝑠

(𝑖,𝑗)∈𝐴

≤ 𝑏𝑚𝑎𝑥 , ∀𝑠 ∈ 𝑆 (8) 

 

𝑋𝑖𝑗𝑠 ∈ {0,1},  ∀(𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆 (9) 

 

𝑌𝑠 ∈ {0,1},  ∀𝑠 ∈ 𝑆 (10) 

 

The objective function (1) is the minimized sum of 

crew cost when covering all the line trips present in 

a timetable and cost of waiting time between them 

plus cost of the total driver's daily vehicle inspection 

time. The crew cost is associated with drivers’ work-

ing time, including breaks (waiting time). 

The constraints (2)-(10) have the following mean-

ing: 

− constraint (2) ensures that each task is assigned 

to one and only one driver duty, 

− constraint (3) conserves the flow, 

− constraint (4) specifies the use of a driver duty 

in a schedule, 

− constraint (5) ensures the time precedence of 

consecutive tasks carried out on a given driver 

duty, and that the break/waiting time between 

two consecutive tasks on that duty stays be-

tween its predefined minimum and maximum 

values, 

− constraint (6) ensures that tasks assigned to 

each driver duty cover at least a predefined 

number of line trips or the duration of a duty is 

no shorter than a predefined time, 

− constraint (7) ensures that the duration of a duty 

is no longer than a predefined time, 

− constraint (8) ensures that tasks assigned to 

each driver duty cover no more than a prede-

fined number of vehicle blocks, 

− constraints (9) and (10) define the domains of 

the decision and auxiliary variables. 

One can notice, that the multiple-depots are not in-

cluded into the above model (no depot index), even 

though a problem is considered to be the MD-CSP 

one. It is due to the assumption (see above) that di-

vers can start and end their duties in different depots 

or any other predefined relief-points. This assump-

tion is crucial when minimizing the number of driver 

duties, thus, efficiently manage the number of nec-

essary drivers. Depots in which drivers start and end 

their duties result from the assigned vehicle blocks, 

which, as mentioned above can be different. Which 

depots, it is defined in a solution of the VSP where 

they are already assigned to particular vehicle 

blocks. This information is included into the CSP as 

an input data. 

The mentioned earlier model proposed by Beasley 

and Cao (1996) was solved to optimality for the in-

stances up to 500 randomly generated driver tasks. 

In turn, in the authors’ previous work (Duda et al., 

2022), the Multi Depot- Multi Type Vehicle Sched-

uling Problem (MD-MTVSP) was solved to opti-

mality using CPLEX Solver for the instances up to 

1 000 line trips. However, for practical large prob-

lems (with the number of line trips > 1500 per day) 

the MIP solvers cannot find even a feasible solution. 

Therefore, a dedicated and efficient original Evolu-

tionary Algorithm (EA) has been developed to solve 
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the above BLP model of the MD-CSP. The proposed 

algorithm is presented in the next section. 

 

4. Proposed Evolutionary-based Algorithm 

A traditional formulation of the CSP, used in the 

most of commercial optimization tools, has the 

drawback such that the crew duties are based on a 

fixed underlying vehicle schedule. Whereas several 

optimal vehicle schedules often exist, but the tradi-

tional formulation considers only one of them. Yet a 

VSP solution that is not considered may in fact lead 

to a better crew schedule. To avoid this drawback a 

solution of the VSP (in particular the MD-VSP) be-

ing a base for a crew duties planning is initially mod-

ified to improve a solution the CSP (in particular the 

MD-CSP). 

The entire approach to solve the MD-CSP as a sec-

ondary to the MD-VSP (the sequential optimization) 

is composed of the four following stages: 

− Solving the MD-VSP – deterministic but fast 

layer-based heuristic algorithm along with the 

Hungarian one is used to generate vehicle 

blocks. 

− Preprocessing-stage – simple but fast heuristics 

is used to modify already existing vehicle 

blocks by putting into them potential relief-

points allowing for much more flexible, thus, 

real-world constraints oriented solution of the 

CSP. 

− Main-stage – the Evolutionary Algorithm (EA) 

is used to transform (divide) vehicle blocks 

based on the relief-points into feasible (meeting 

the real-world constraints) and ready to use (be-

ing good enough for direct implementation) 

pieces of work to be next assigned to daily 

driver tasks (duties). 

− Post-processing-stage – deterministic but fast 

layer-based heuristic algorithm along with the 

Hungarian one is used to assign pieces of work 

to driver duties. 

The main- and post-processing stages are interwo-

ven, i.e., the latter is executed within the former, in 

between its first and second step – see below. 

The first and last stages are based on the two well-

known algorithms. The first is the layer-based algo-

rithm, that is one of the basic procedures used when 

combining line trips, i.e., timetabled ones into vehi-

cle blocks (Valouxis & Housos, 2002). In short, all 

trips are assigned to the so called layers. First, all 

trips are arranged in ascending order according to 

their end times (li). The end time l1 of the first trip is 

used to create the first layer, i.e., all trips that start 

before l1 (ei < l1) form the first layer. The remaining 

trips are put into subsequent layers in a similar man-

ner. In this way, layers are created until the set of 

trips is empty. For further reading see (Kisielewski, 

2019). However, in the post-processing-stage the 

layer-based algorithm was adapted to combine 

pieces of work (instead of line trips) into driver du-

ties (instead of vehicle blocks). The second one is 

the Hungarian algorithm, that is one of the best al-

gorithms for solving the generalized assignment 

problem (GAP), is used twice. Once, in the first 

stage to assign all line trips from consecutive layers 

to vehicle blocks adding technical trips (deadheads) 

and taking into account the real-world constraints. 

Alternatively, a greedy algorithm can be used here. 

The assignment procedure continues until all layers 

are checked. Thus, a solution of the MD-VSP is 

reached. And the second time, in the post-processing 

stage to assign pieces of work to driver duty. Thus, 

a solution of the MD-CSP is reached. 

In between, there are the two stages being crucial for 

the entire approach. 

In the preprocessing-stage already existing vehicle 

blocks are modified by putting into them relief-

points according to some predefined rules, which are 

real-world constraints oriented. The rules are as fol-

lows: 

− at the very beginning all entire vehicle blocks 

constitute an indivisible pieces of work to be 

scheduled, as in the classical CSP; 

− some combinations of trips cannot be separated 

by relief-points, e.g., deadhead once and the 

first or last line trips in a vehicle block; 

− relief-points can be placed in all depots, unless 

the previous rule is met or breaks are not too 

short; 

− all perspective pieces of work between the two 

consecutive relief-points are accepted, unless 

their duration is neither too short nor to long; 

− not accepted pieces of work (including entire 

vehicle blocks) having duration time longer at 

least twice as much as the maximum one are 

further divided into two parts, if possible hav-

ing the same or similar duration; 

− pieces of work (including entire vehicle blocks) 

can be divided into two parts at first at pre-se-

lected stops allowing for the exchange of 



Redmer, A., Kisielewski, P., Obłaza, J. 

Archives of Transport, 74(2), 65-81, 2025 

73 

 

 

drivers, and at second at terminuses or charging 

stations of the EVs; 

− if the two parts meet all organizational con-

straints, e.g., are not too short, both are ac-

cepted; 

− not accepted pieces of work (including entire 

vehicle blocks) having duration time of an in-

ter-trip breaks longer than the maximum one 

are further divided into parts if, at the locations 

where the breaks occur, the exchange of drivers 

is possible, and accepted; 

− pieces of work (including entire vehicle blocks) 

still not accepted are divide more (e.g., +20%) 

or less (e.g., - 20%) in the middle (conserving 

their duration) into two parts at stops or other 

points that allow for the exchange of drivers, 

and accepted; 

− remaining not divided vehicle blocks or its 

parts are finally accepted as they are. 

The above-presented rules of placing relief-points 

into vehicle blocks are used to mark potential points 

of their division that is going to be done in the next 

stage. 

In the main-stage, vehicle blocks are divided into 

parts, i.e., pieces of work. The division can be done 

only at the relief-points. The aim of the division is to 

transform the entire vehicle blocks into pieces of 

work that make the MD-CSP solutions better, i.e., 

much more real-world constraints oriented. 

It is the EA that is used to transform vehicle blocks. 

The input data feeding the EA are the vehicle blocks 

with relief-points placed into them. 

The crucial element of the EA is a chromosome rep-

resenting the problem to be solved. The problem is 

at the beginning coded as the chromosome, and 

eventually, when the optimization procedure is fin-

ished, encoded back to the problem, i.e., its solution. 

Genes in the chromosome we propose represent par-

ticular relief-points in the all consecutive vehicle 

blocks. The length of the chromosome equals to the 

number of all relief-points resulting from the prepro-

cessing-stage. Values of the particular genes are bi-

nary (that makes the algorithm a Genetic one, actu-

ally) and can be set to 1 (true) or 0 (false) meaning 

that a given relief-point divides particular vehicle 

block into parts or not, accordingly – see Figure 1 

(down). 

The following standard steps are performed by the 

EA: 

− Step 1 – Initialization: the initial population 

(first generation) of N individuals is generated 

assuming that at least one individual or some 

predefined percent (e.g., 10%, 20%, 30%, …) 

of them contains all the genes set to 1 (true), 

and the rest of individuals are generated ran-

domly according to the uniform distribution. 

Here the post-processing-stage is executed. 

− Step 2 – Evaluation: value of the fitness func-

tion is computed for each individual in the pop-

ulation. The fitness function presents Eq. (10). 

− Step 3 – Selection: for the first, the best one in-

dividual is selected taking into account value of 

the fitness function, for the second, the rest n – 

1 individuals that go to the set of parents are 

selected using the roulette method. As a result 

the set of parents contains n individuals. 

− Step 4 – Creation of offsprings: it is done using 

a crossover operator. The one-point crossover 

is done randomly, both, concerning the selec-

tion of two parents that will produce two off-

springs, and the crossover point. The number of 

n offsprings is produced. 

− Step 5 – Creation of a new population (next 

generation): the new population is composed of 

N – n best, concerning the fitness function, in-

dividuals from the previous population plus n 

offsprings. 

− Step 6 – Mutation: for each individual in the 

new population and each gene in the chromo-

some representing this individual a random 

value is drown according to the uniform distri-

bution. This value compared to some prede-

fined threshold decides if value (0 or 1) of this 

gene is flipped to the opposite one (1 or 0). 

The post-processing-stage along with steps 2 to 6 are 

repeated until a stop criterion is met. It is the prede-

fined computational time or a number of iterations 

without improvement of the value of fitness func-

tion, depending which occurs first. 

The logic of the transition between the pre- and post-

processing-stage, including the main one in be-

tween, i.e., from transforming (putting the relief-

points and dividing) vehicle blocks into pieces of 

work up to assigning them to driver duties presents 

Figures 1, 2, and 3.
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Fig. 1. Vehicle blocks divided into pieces of work (up) based on relief-points defined in the chromosome with 

six genes (down) 

 

 
Fig. 2. Pieces of work divided into layers 

 

 
Fig. 3. Driver duties with pieces of works assigned to them 

 

As Figure 1 (up) shows at first (the preprocessing-

stage) the six potential relief-points are put into two 

vehicle blocks at the all possible places staying in 

conformity with the rules described earlier. Each 

single gene in the chromosome denotes one relief-

point – Figure 1 (down). Next (the main-stage) ve-

hicle blocks are divided into six pieces of work at 

the selected relief-points – Figure 2, by setting val-

ues of particular genes to true – Figure 1 (down). 

Eventually (the post-processing-stage) the pieces of 

work are combined into three driver duties – Figure 

3. The first (upper one) driver duty and the last 

(lower one) are not combined together into one duty 

due to their total duration time that exceeds the ex-

pected maximum one. 

The last but not least element is the fitness function 

used in the EA. It is represented by a weighted sum 

of particular generalized cost components as in Eq. 

11. Value of the fitness function is dimensionless 

and minimized for it is composed of generalized 

costs. It has to be kept in mind, that the execution of 

the EA is intermitted by the post-processing-stage. 

As a result, when the fitness function is computed 

the driver duties are already generated, thus, the 

number of them is known. 
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𝑀𝑖𝑛 𝐹𝑆

= 𝜔1

𝑆𝑇

𝑆max
+ 𝜔2

∑ ∑  𝑓(𝑤𝑖−1𝑖)𝑤𝑖−1𝑖
𝑊𝑠
𝑖=2

𝑆𝑇
𝑠=1

𝑡𝑇

+ 𝜔3 (
𝑅 − ∑ 𝑟𝑠

𝑆𝑇
𝑠=1

𝑅
) + 𝜔4

𝑆𝐷

𝑆𝑇
+ 𝜔5

∑ 𝑡𝑑𝑒𝑣.
𝑆𝑇
𝑠=1

𝑆𝑇

+ 𝜔6

∑ 𝜆𝑠
𝑆𝑇
𝑠=1

𝜆max
+ 𝜔7

𝑆𝑁

𝑆𝑇
 

(11) 

 

where: 

𝜔1…7  – weight coefficients; 𝜔1…7[0, 1], 

𝑆𝑇 – total number of all driver duties, 

𝑆max – maximum number of driver duties (number 

of available drivers), 

𝑊𝑠 – number of pieces of work within driver duty 

𝑠, 

𝑓 – impact function of the inter-piece of works 

break time, 

𝑤𝑖−1𝑖 – inter-piece of works 𝑖 − 1 and 𝑖 break time, 

𝑡𝑇 – total duration time of all driver duties, 

𝑅 – total number of all line trips within all vehi-

cle blocks (trips scheduled when solving the 

VSP), 

𝑟𝑠 – number of line trips within driver duty 𝑠, 

𝑆𝐷 – number of degenerated driver duties, e.g., 

lasting for less than 2 hours or composed of 

less than 3 line trips, 

𝑡dev. – deviation of the actual duration time of 

driver duties in relation to its expected value, 

e.g., 8 hours, 

𝜆𝑠 – number of vehicle block changes within 

driver duty s, 

𝜆max – maximum number of vehicle block changes 

in a single driver duty – average number of 

block changes should not exceed 3, there-

fore it is assumed that 𝜆max [5, 10], 

𝑆𝑁 – number of driver duties without required 

break (rest) time in social points. 

The break time impact function f(wi–1i) concerns the 

duration of a break between two consecutive line 

trips i. The function is presented in Figure 4, where 

wmin is the minimum break time, wopt – optimal, ex-

pected break time, and wmax – maximum one. The 

fmin is a fourth parameter that can be adjusted in the 

range of [0, 1]. 

The four parameters (wmin, wopt, wmax and fmin) of the 

break time impact function f(wi–1i) allow to imple-

ment the obligatory driver’s rest time requirements. 

In this research the EU’s (thus, Polish as well) rest 

time regulations are considered, i.e., for driver duty 

duration: 

− below 6 hours: no breaks required, 

− between 6 and 8 hours: one 30-minute break or 

two 15-minute breaks, 

− over 8 hours: one 45-minute break or three 15-

minute breaks. 

The demand on the between-trip breaks imple-

mented with the f(wi–1i) function forces adequate rest 

time breaks during scheduled duties. Moreover, 

even if the expected breaks are not met, the solution 

(an individual) is not excluded from the population 

but gets the very big cost, which with high probabil-

ity excludes it from a selection for the next genera-

tion. 

 

 
Fig. 4. Piecewise-linear impact function for evaluation of inter-trips break times 
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5. Computational Experiments and Results 

5.1. Real-World Problem Instances – description 

The proposed EA that minimizes as a primary goal 

the total crew working costs when inspecting and 

driving vehicles, and also waiting for the next task 

to be done was tested using a real-world data sets 

from three cities in Poland. The cities are in the top 

fifteen of the Polish cities with the largest number of 

inhabitants. 

The first of the considered cities, denoted by C1, is 

the largest one with a population of more than 800 

thousand inhabitants. In the analysis for the compar-

ison to two other cities only bus transport was con-

sidered in the city C1. There are 4 bus depots in the 

city used by 2 public transport operators. The mixed 

fleet of over 600 buses altogether in both operators, 

over 500 buses in bigger operator, includes standard 

(12 m long) and articulated (18 m long) buses. Part 

of them is powered by traditional internal combus-

tion (ON, CNG) and the other by electric engines. 

There are 172 bus lines in the city, which cover al-

most 2 300 km in total. During the working day there 

are about 11 200 line trips to be scheduled when 

solving the VSP. Regarding electric vehicles, there 

are 9 charging stations in the city transport network 

equipped with fast chargers. They are dedicated for 

recharging bus batteries on-route (using the plug-in 

or pantograph connection). There are also slow 

chargers in the depots for overnight charging (plug-

in connection only). As for the CSP, in bigger oper-

ator, there are about 500 vehicle blocks during a 

working day to be divided into parts if necessary in 

aim to create pieces of driver work, i.e., duties for 

drivers. Each single vehicle block contains almost 

19 line trips and its duration accounts for more than 

16 hours, on average. Taking into account the above, 

the daily number of driver duties in bigger operator 

to be scheduled range up to 992 depending on the 

rules applied when dividing vehicle blocks into 

driver pieces of work (tasks).  

The second of the considered cities, denoted by C2, 

is a medium size one with the population ranging 

from 300 to 400 thousand inhabitants. There are 3 

operators whose buses are located in their own de-

pots in the city. The public transport operators use a 

mixed fleet of buses as well. One operator also op-

erates trolleybuses. The fleet with about 300 buses 

includes the same types of vehicles as in the case of 

the C1. There are 74 bus lines in the city, which 

cover 1 100 km in total, and about 3 800 line trips to 

be scheduled during a working day. There are 16 

charging stations equipped with fast chargers, and 

slow chargers located in the depots as well. There 

are almost 300 vehicle blocks daily. Each single 

block contains about 13 line trips, and its duration 

accounts for about 15 hours, on average. The num-

ber of duties to be scheduled range up to 454. 

And finally, the third of the considered cities, de-

noted by C3, is the smaller one with the population 

about 200 thousand inhabitants. One public operator 

operates buses from 1 depot in the city. The public 

transport operator uses a mixed fleet of buses includ-

ing electric ones. The fleet of about 200 buses in-

cludes the similar types of vehicles as in the case of 

the two previous cities (C1 and C2). There are 54 

bus lines in the city, which cover 863 km in total and, 

and about 2676 line trips to be scheduled during a 

working day. There are 2 charging stations equipped 

with fast chargers, and also slow chargers in the de-

pots too. There are about 200 vehicle blocks daily. 

Each single block contains about 13 line trips, and 

its duration accounts for about 13 hours, on average. 

The number of driver duties to be scheduled range 

up to 304. 

In all the above described cases the following real-

world expectations in relation to the model parame-

ters defined in Table 1 and Eqs. (5-8) with subscripts 

min or max were taken into account: i) minimum 

number of line trips assigned to a single driver 

duty 𝑙𝑡𝑚𝑖𝑛 = 4, otherwise a duty is considered to be 

degenerated; ii) maximum number of vehicle blocks 

assigned to a single driver duty, thus, changes of ve-

hicle on a duty 𝑏𝑚𝑎𝑥 = 5 𝑡𝑜 10 ; iii) minimum 

break/waiting time between two consecutive trips on 

driver duty  𝑏𝑡𝑚𝑖𝑛 = 2 𝑡𝑜 5 [𝑚𝑖𝑛. ] ; iv) maximum 

break/waiting time between two consecutive tasks 

on driver duty 𝑏𝑡𝑚𝑎𝑥 = 60 𝑡𝑜 120 [𝑚𝑖𝑛. ]; v) mini-

mum duration time of a single driver duty 𝑑𝑡𝑚𝑖𝑛 =
120 [𝑚𝑖𝑛. ], otherwise a duty is considered as de-

generated; and vi) maximum duration time of a sin-

gle driver duty 𝑑𝑡𝑚𝑎𝑥 = 600 𝑡𝑜 630 [𝑚𝑖𝑛. ]. 
 

5.2. Results Discussion 

The detailed results of the simulation experiments 

carried out for the large- (C1), medium- (C2) and 

small-medium size (C3) cities are presented in Ta-

bles 2, 3 and 4, respectively. The results cover a se-

lected but crucial KPIs, all minimized, characteriz-

ing particular driver duty schedules. There are two 

new driver duty schedules (S2 and S3) proposed 
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based on the optimization results, and the one (S1) 

already used by each city. The schedules were gen-

erated according to the three different scenarios, i.e.: 

− Scenario 1 (S1) – the base-line driver duties 

schedule being a real-world one used in a given 

city (large, medium or small one) and prepared 

manually by expert planners of public transport 

operator (PTO) based on a real-world VSP so-

lution prepared manually as well; 

− Scenario 2 (S2) – the driver duties schedule 

prepared using proposed approach to solve the 

MD-CSP (the evolutionary-based algorithm – 

stages 2, 3 and 4) as a secondary to the MD-

VSP (the sequential optimization) where the 

VSP solution is a real-world one used in a given 

city and prepared manually by expert planners 

of PTO; 

− Scenario 3 (S3) – the driver duties schedule 

prepared using the entire proposed approach to 

solve the MD-CSP (stages 1 to 4) as a second-

ary to the MD-VSP where the VSP solution is 

obtained within the first stage using the deter-

ministic fast layer-based heuristic algorithm 

along with the Hungarian one. 

Solutions in scenarios S2 and S3 were obtained us-

ing the proposed EA and appropriately adjusted val-

ues of weights in the fitness function, its 7 cost com-

ponents (Eq. (11)). Thus, more than one KPI can be 

minimized at the same time. 

As can be seen in Tables 2, 3 and 4 driver duty 

schedules prepared manually (S1) are mostly fo-

cused on avoiding vehicle (block) changes by driv-

ers during their duties (no changes at all). This is a 

well-known problem in practice. Drivers are usually 

very reluctant to change a vehicle during a shit. Not 

to mention to change it more than once. They find it 

very inconvenient. Such observations are confirmed 

by Wang et al. (2022). Andrade-Michel et al. (2021) 

state that to improve the VCSP (they consider driv-

ers’ reliability too) the number of vehicle swaps per 

driver should be minimized. However, the schedules 

obtained within scenarios S2 and S3 introduce on 

average 40 vehicle block changes daily, which result 

in 0,07 changes per one duty, only. In the other 

words 7% of duties which contain one change of a 

vehicle. But, this is enough to reduce at the same 

time the number of duties, thus, drivers by almost 

6% on average. The vehicle block changes allow in 

turn for the reduction of the regular breaks time by 

almost 11%, on average. These are the brakes 

between consecutive pieces of work (driver tasks) 

scheduled for a given duty. But, taking into account 

the way the proposed EA transforms (divide) vehicle 

blocks into pieces of work based on the relief-points 

the breaks are an inter-line trip ones, as well. There-

fore, it is the reduction of regular breaks time due to 

an introduction of the vehicle block changes that in-

fluences (reduces) the number of duties. To reduce 

the number of duties is especially important when 

facing the severe shortage of drivers which is a dom-

inating trend in European Union (EU). And, this is 

what the current situation at the transport market 

looks like. The problem is not the availability of ve-

hicles at all, but drivers. 
 

Table 2. CSP (daily) solutions for a large-sized city 

(C1) 
Scenario: 

KPI (minimized): 
S1 S2 S3 

Vehicle blocks [-] 502 502 496 

Duties (= drivers) [-] 992 936 912 

Long duties (> 10h) [-] 69 44 151 

Working time [h] 8 081 7 767 7 561 

Regular breaks time [h] 2 465 2 392 1 862 

Long breaks time [h] 291 189 443 

Total time [h] 10 837 10 348 9 866 

Vehicle block changes [-] 0 7 149 
 

Table 3. CSP (daily) solutions for a medium-sized 

city (C2) 
Scenario: 

KPI (minimized): 
S1 S2 S3 

Vehicle blocks [-] 282 282 272 

Duties (= drivers) [-] 454 434 443 

Long duties (> 10h) [-] 97 14 42 

Working time [h] 4 324 4 010 4 000 

Regular breaks time [h] 875 877 805 

Long breaks time [h] 316 326 439 

Total time [h] 5 515 5 213 5 244 

Vehicle block changes [-] 0 3 32 

 

Table 4. CSP (daily) solutions for a small-sized city 

(C3) 
Scenario: 

KPI (minimized): 
S1 S2 S3 

Vehicle blocks [-] 199 199 172 

Duties (= drivers) [-] 304 294 272 

Long duties (> 10h) [-] 0 0 0 

Working time [h] 2 558 2 566 2 447 

Regular breaks time [h] 713 721 586 

Long breaks time [h] 302 311 222 

Total time [h] 1 015 1 032 808 

Vehicle block changes [-] 0 14 32 
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The introduction of vehicle block changes is the cost 

to be paid for the reduction of the number of neces-

sary drivers, which seems to be not too high. Con-

sidering the C1 and scenarios S1 and S2 only, it can 

be concluded that in this case a 6% reduction of the 

number of duties can be obtained while reducing by 

one-third the number of long duties (> 10h) or long 

breaks time. 

As for the results obtained for the particular cities 

(C1-C3) it can be observed that values of the all 

KPIs presented in Tables 2, 3 and 4 can be improved 

while minimizing the number of driver duties. There 

is only one exception, i.e., the number of vehicle 

block changes that increased in all analyzed cases 

(C1-C3). Moreover, no significant differences and 

regularities have been observed when solving the 

MD-CSP sequentially along with the MD-VSP for 

large, medium and small-size cities using as a start-

ing point the VSP solution prepared manually or 

with a help of the proposed approach (stage one). 

Obtained solutions of the MD-CSP, their character-

istics and quality do not depend both on the size of 

the analyzed city (C1-C3), and the starting point, 

i.e., the way a solution of the MD-VSP is obtained 

(S2-S3). When solving the MD-CSP good results 

can be obtained starting from both the manual and 

algorithm based VSP solutions. 

To compare the solutions obtained using the pro-

posed EA (S2 and S3) to the base-line, manual one 

(S1) relations of the KPIs are presented in Figure 5. 

The values of the KPIs for the scenarios S2 and S3 

were divided by appropriate values obtained under 

the S1 scenario. Thus, in Figure 5 the increases (+%) 

and decreases (–%) of these relational values can be 

observed. Knowing that the lower values are the bet-

ter for all the KPIs, advantages (–%) of the solutions 

obtained using the proposed EA can be observed, 

and at the cost of which disadvantages (+%) they 

were gained. The vehicle block changes KPI has 

been excluded from this analysis for its values ob-

tained under the S1 scenario equal to zero. However, 

the number of vehicle block changes increased in 

scenarios S2 and S3 in comparison to the S1. And, 

the increase of the number of vehicle block changes 

is significantly higher (almost 9 times) in S3 than in 

S2. This implies that solving the MD-CSP based on 

the MD-VSP solutions obtained using the proposed 

EA results in higher numbers of vehicle block 

changes than for the solutions of the MD-VSP ob-

tained manually. This shows that the deterministic, 

layer-based heuristic algorithm along with the Hun-

garian one which is used to generate vehicle blocks 

is fast but not good enough. In general, it can be 

stated that to reduce the number of duties, and thus 

the number of necessary drivers it is necessary to ac-

cept the introduction of the increased number of ve-

hicle changes within the duties. But at the same time, 

both the number of long duties (by -15% on average 

over analyzed cases) and total time (-7%) can be re-

duced significantly. And finally, based on the entire 

set of solutions obtained for the all cities and scenar-

ios, a correlation analysis was conducted for partic-

ular KPIs – Table 5. 

 

Table 5. Pearson correlation coefficient (r) for pair-

wise combinations of KPIs 

KPI 
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Duties 1,00       

Long duties 0,69 0,67      

Working time 1,00 1,00 0,69     

Regular breaks time 0,96 0,98 0,52 0,97    

Long breaks time 0,05 0,01 0,50 0,03 -0,16   

Total time 0,98 0,97 0,71 0,98 0,92 0,11  

Vehicle block changes 0,35 0,33 0,67 0,33 0,19 0,59 0,29 

 

In Table 5 there are positive and negative relations 

between the KPIs characterizing the crew duties 

schedules obtained using the proposed evolutionary 

based algorithm. The most interesting and important 

relations are marked in bold. At first the full corre-

lation (r = 1.00) between the number of vehicle 

blocks, duties and working time can be observed. 

The regular breaks time is also almost fully corre-

lated with the number of vehicle blocks and duties. 

This can be observed in Tables 2, 3 and 4, as well. 

Thus, the higher number of vehicle blocks the higher 

number of duties and longer working and regular 

brakes times. As for the vehicle block changes, the 

increase in their number implies the increase in the 

number of long duties and requires longer breaks 

within them. In the other words to change a vehicle 

within a duty driver has to wait. Long breaks are usu-

ally connected with the inter-peak period. 
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Fig. 5. Relative changes in values of selected KPIs for the scenarios S2 and S3 in relation to the manual 

scenario S1 

 

6. Conclusions and Further Work 

Carried out computational experiments for the three 

real-world problem instances (i.e., large, medium 

and small-size cities characterized by thousands of 

line/timetabled trips and hundreds of vehicle blocks 

a day), showed that depending on the individual con-

ditions of the urban public transport system, there 

are real possibilities of reducing the number of vehi-

cle blocks, thus necessary vehicles by approx. 1% up 

to 14%. Taking into account the individual expecta-

tions of public transport operators, e.g., taking into 

account the individual configuration of breaks for 

the so-called "congested lines", the matrix of prefer-

ences for line changes, queuing electric buses for 

charging, in practice this reduction stands for ap-

prox. 2-3%. Importantly, the reduced number of ve-

hicles results in an increase in the number of line 

changes on vehicle blocks and usually an increased 

distance of technical trips, also break times between 

trips on vehicle blocks are reduced. But vehicle 

schedules created to reduce their number are not 

constructed for driver duties, which will result in 

more changes of vehicles on driver duties. 

On the other hand, the effect of optimizing driver 

duties, as a secondary to the VSP, is the reduction in 

their number by approx. 6%. And this result depends 

significantly on the vehicle schedules, which was 

confirmed by the analyses described in the article, 

but also numerous analyses independent to the pre-

sented. 

In the light of the worldwide trend of the increasing 

shortage of drivers and practical vehicle availability, 

operators can focus on minimizing the number of 

duties, while maintaining the vehicle schedules. The 

presented research has shown that crew scheduling 

optimization can significantly reduce carriers’ oper-

ating costs, especially personnel ones by 2-3%. 

The general observation is that there is a direct rela-

tionship between the minimized number of duties in 

the schedules (that is the primary goal, both in theory 

and practice), and the number of vehicle block 

changes within particular duties. Thus, the main way 

to reduce the number of duties is to allow vehicle 

block changes in the crew schedules. Moreover, we 

observed that there is another promising way to re-

duce the number of both vehicle blocks and driver 

duties. It is to make some minor changes to the 
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timetables, i.e., the start times of line trips, which are 

practically imperceptible, and thus unimportant to 

passengers but at the same time allowing the reduc-

tion of the number of vehicles and drivers (Amberg 

& Amberg, 2023). And this aspect incorporated into 

a sequential, but also fully integrated multi-depot ve-

hicle and crew scheduling problem (MD-VCSP) will 

be the direction of authors’ further work combining 

the presented and previous research (Duda et al., 

2022). 
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