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Abstract: 

This paper examines the influence of two selected car-following models on the outcomes of microscopic traffic simu-
lations. The authors begin by reviewing the literature on the various traffic models, methods for estimating energy 

consumption, fuel use, and emissions. The authors discuss using surrogate safety measures derived from analysing 

vehicle trajectories in a microscopic traffic model to estimate safety levels. This paper also outlines the authors' ap-
proach to data acquisition and processing at the chosen test site. Most data are sourced from the city's Intelligent 

Transport System (ITS) services, including traffic flow volume, vehicle speed, and public transport travel times. The 

data gathered from Automatic Vehicle Location (AVL) systems was compared to manual travel time measurements. 
Depending on the analysed section Mean Average Error (MAE) ranging from 3 to 5 seconds was obtained, however, 

Mean Absolute Percentage Error (MAPE) ranged from 7.46% to 30.01%. The proposed method aims to evaluate the 

precision of the microscopic model in replicating real road networks and traffic based on available datasets. Two car-
following models (CFM), Wiedemann 74 (W74), and Wiedemann 99 (W99) are chosen for further analysis. The models 

were validated using the GEH statistic and by comparing speed distributions. Both the models yielded satisfactory 

results. Different scenarios involving changes in traffic flow and to traffic signal configurations were analysed. While 
both W74 and W99 yielded satisfactory results, there were discernible disparities in the analyses. In general, W99 

yields less favourable results, characterised by emissions, and delays compared to W74. Depending on the scenarios 

compared, the number of conflicts for W74 varied up to 56% (scenarios 2 and 4), and up to 78% for W99 (scenarios 
1 and 4). The methodology presented by the authors can be used in future research to analyse various traffic control 

solutions concerning their impact on the environment and traffic safety. The observed differences underscore the im-

portance of careful model selection and presented approach can serve as a foundation for developing guidelines for 
microscopic modelling and a multi-criteria approach to selecting the most effective implementation scenarios. 
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1. Introduction 

Global energy demand increases every year (Ritchie 

et al., 2024). Up to 84.3% of the energy needed for 

transportation, heating, and electricity production 

comes from fossil fuels, while the remaining 15.7% 

is obtained from low-carbon sources. Taking into ac-

count only electricity production, 63.3% comes from 

fossil fuels. The above values result in the emission 

of harmful substances into the environment, which 

affects people's health and quality of life. The unsus-

tainable growth of transportation activities puts a 

strain on the ecosystems and resources of the planet.  

Greenhouse gas (GHG) emissions from energy pro-

duction are one of the main causes of climate 

change. In Europe, GHG emissions were subject to 

a decrease between 1990 and 2017, except for the 

transportation sector (EEA, 2024). The transport 

sector is responsible for 20% of total GHG and 30% 

of total energy consumption in the European Union. 

Road transport accounts for the largest share of 

GHG, at 72%.  (Ajanovic & Haas, 2017; EEA, 

2024). Over the past few years, new and increasingly 

stringent emission standards have emerged, result-

ing in declining emissions from newly manufactured 

cars. However, a comparable share of carbon diox-

ide production by road transport has been main-

tained for years (Roselló et al., 2016).  

Due to the observed slow transition to alternative 

fuel sources and energy-efficient propulsion, the 

transport sector is blamed for the possible non-ful-

filment by individual countries of their commit-

ments under international climate change agree-

ments (Sims et al., 2014). For this reason, transport 

continues to be at the centre of any debate on energy 

conservation due to its dependence on fossil fuels for 

both passenger and freight transport. (Oskarbski & 

Biszko, 2023). There are many indications that the 

electrification of transport may not be fast enough to 

achieve energy-efficient and low-carbon targets for 

the road transport sector. (Creutzig et al., 2018; Mas-

son-Delmotte et al., 2018). Because of the above, ef-

forts should be made to compensate for the growth 

in energy demand as much as possible. The trends 

observed in transport development call for measures 

to reduce energy consumption increase decarbonisa-

tion, and improve road safety.  

Assessing the effectiveness of such measures is pos-

sible using transport models that estimate energy 

consumption and emissions and allow the level of 

change in road safety to be analysed. In the 

context of the transportation sector, especially road 

transport, three main components can be identified: 

people, vehicles, and infrastructure. All of these ele-

ments will have an impact on the evolution of traffic 

energy demand as well as on road traffic safety.  

The United Nations (UN) indicated that improving 

public health is a fundamental goal of sustainable 

global development (United Nations, 2015). Road 

traffic injuries are currently a major public health is-

sue in society and their cause can be blamed on mal-

functioning road transport systems. The problem is 

global and occurs in both industrialised and devel-

oping countries.  

International comparisons on road safety can be 

made using the demographic road fatality rate 

(RFR), among others (Jamroz et al., 2019). Taking 

the RFR into account, a country's level of road safety 

varies non-linearly and follows its socioeconomic 

development as measured by Gross Domestic Prod-

uct per capita (Jamroz et al., 2019; Law et al., 2011). 

Developing countries are in the upward phase of the 

RFR (before the turning point) and industrialised 

countries are in the downward phase (after the turn-

ing point) (Jamroz et al., 2019). It is crucial for de-

veloping countries to work towards reversing the de-

teriorating trend of road safety levels. Despite the 

downward trend in RFR in developing countries, it 

is imperative to sustain the decline in fatalities and 

potentially expedite the pace of reduction. A variety 

of factors influence the degree of road safety. Glob-

ally, it is mainly determined by a country's level of 

socioeconomic development and the mobility of its 

population (Law et al., 2011; Small et al., 2023). 

However, traffic management solutions, such as 

traffic organisation and control, also impact road 

safety levels. Hence, it is imperative to consider this 

aspect in the planning and designing of traffic im-

provements. The decision-making process to select 

the best solutions in terms of changes to infrastruc-

ture and traffic management elements to improve 

traffic conditions and safety and reduce negative im-

pacts on the environment and surroundings can be 

supported by tools such as transport models. 

The main aim of this paper is to present methods and 

models for estimating anticipated energy demand, 

calculating harmful environmental emissions, and 

estimating traffic conflicts as surrogate measures of 

road traffic safety. The approach presented in this 

paper aims to provide a general evaluation of traffic 

organisation and control solutions using 
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a microscopic model. It represents a step towards 

developing a multi-criteria method for evaluating 

the effectiveness of changes planned or imple-

mented in the transport system. When discussing en-

ergy, the focus is on calculating the resistance to 

movement that a vehicle experiences. The engine 

must produce a specific amount of energy to over-

come this resistance. This value allows for estimat-

ing the electrical energy consumption of electric ve-

hicles (EVs). Since fuel is used to generate energy 

in internal combustion engines (ICE), similar ap-

proach enables estimating fuel consumption for ICE 

vehicles. The approach outlined in this paper allows 

the results to be utilised for estimating pollutant 

emissions, specifically focusing on carbon dioxide 

emissions. The results for greenhouse gas emissions 

and other emissions can be used, among other 

things, to assess the impact of traffic control strate-

gies on energy efficiency, the environment, traffic 

efficiency and safety.  

Section 2 provides an overview of traffic modelling 

issues, focusing on the methods used in micro-

scopic-level modelling for simulating motor vehicle 

traffic, estimating harmful emissions from motor ve-

hicle traffic, the number of traffic conflicts repre-

senting the level of road traffic safety and the vali-

dation processes of microscopic models. Section 3 

describes the methodology for the study, including 

modelling the transport network in the simulation 

area, modelling driver behaviour, analysing public 

transport vehicle travel time (TT) data, and estimat-

ing emissions and traffic safety surrogate measures. 

Section 4 explains the process of calibrating and val-

idating model elements, including traffic volumes, 

speed distributions, and travel times. The calibrated 

and validated models were used to conduct compar-

ative research. The results of the study are presented 

in Section 5. The research results obtained using se-

lected CFMs in the traffic simulation models were 

carried out according to the methodology described. 

The research considers examples of traffic control 

scenarios and different levels of traffic volumes. The 

results enable a comparative analysis of the applica-

tion of the selected CFMs in terms of vehicle delays, 

energy and emissions consumption, and the number 

and type of traffic conflicts. Section 6 discusses the 

issues presented. Section 7 contains the conclusions 

of the research presented in the paper. The wide 

range of results presented in the article is a prelude 

to developing a multi-criteria evaluation of the 

improvements implemented at intersections. Such 

an assessment can be extremely helpful in selecting 

the best solutions for the required traffic organisa-

tion and traffic control improvements.  

 

2. Literature review 

The European Commission (Wefering et al., 2014) 

recommends using different methods and tools to in-

crease the efficiency of the planning and decision-

making processes. Transport models are used for 

planning, decision-making, and monitoring pro-

cesses of implemented measures. Transport models 

can provide much-needed support for planning and 

decision-making (Givoni et al., 2016) and supple-

ment engineering knowledge and practice with the 

results of simulations conducted in the model. The 

results generated by the transport model can provide 

essential information on existing or future transport 

problems that arise from changing mobility patterns, 

urban spatial development, and planned or ongoing 

transport projects. With a range of applications that 

can serve different municipal or road authorities, it 

can support a range of activities, from planning the 

transport system to local traffic management at the 

operational level.  Developing a new model or up-

dating it requires funding and qualified staff. The 

cost of building a model depends on its complexity 

and the size of the city or area requiring modelling, 

which can sometimes be a real barrier. Human and 

financial resources are needed to maintain and im-

prove the model. Many towns and rural road admin-

istrations do not have a transport model, probably 

due to the anticipated costs of building and maintain-

ing one. Transport models require money, personnel 

staff, and time, and decision-makers do not always 

appreciate the benefits. As a result, the decision to 

work with a model should only be made if the costs 

and benefits are properly understood. Transport 

models allow for the representation of the flow of 

people and goods in a transport network in an area 

with specific socioeconomic and land use character-

istics (Sivakumar, 2007). These tools help simulate 

the behaviour of the city's transport system and its 

users, with the system's response to transport supply 

and demand changes. In the second half of the twen-

tieth century, there was extensive research on math-

ematical modelling of transport networks, travel de-

mand, and vehicle flows (Singh & Dowling, 1999). 

As a result of this research, many software packages 

have been developed to help develop models of 
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transport systems for a given area and elements of 

the road network, taking traffic and travel forecast-

ing into account (Barcelo, 2010). 

There are different approaches to traffic modelling, 

depending on the transport system elements studied, 

the study's area scope, and the expected results. 

Transport demand and street network models can be 

developed at varying levels of detail: macroscopic, 

mesoscopic, or microscopic (Gerlough & Huber, 

1975). The most commonly used models for plan-

ning purposes are macroscopic models (e.g., the in-

tegrated transport and land use model or the four-

stage travel demand model) (Gavanas et al., 2016; 

Wefering et al., 2014). For strategic studies, macro-

scopic models are commonly used in developing 

land use and transport plans or planning large-scale 

road networks and public transport routes. Macro-

scopic models are generally designed to research the 

movement of people, goods, or vehicles across a 

broad area with a lower level of detail, primarily due 

to limitations in survey tools and data availability 

(Alonso et al., 2017; Oskarbski et al., 2021). Plan-

ning software that uses macroscopic models facili-

tates the analysis of changes in transport demand re-

sulting from variations in land use, socioeconomic 

factors, and demographic data. It also allows for the 

analysis of modal split and modal shift between dif-

ferent transport modes resulting from changes in the 

transport system. For modelling purposes, a macro-

scopic approach, like a four-stage model, is em-

ployed (Bonnafous et al., 2013; Ortuzar et al., 2011). 

This approach comprises two fundamental compo-

nents: transport network and travel demand models. 

These models consider deterministic characteristics 

of a traffic stream, such as speed, flow, and density. 

The resulting values are usually aggregated, e.g. the 

average number of vehicles per day or peak hour. 

The modelling results can provide a platform for es-

timating delays, emissions and safety for a specific 

and extensive road network (Ambroziak et al., 2015; 

Gore et al., 2023; Jacyna et al., 2017, 2021, 2022). 

The disadvantage of this approach is the relative lack 

of precision. Some aspects present in the road net-

work, such as local conditions, individual driver be-

haviour and specific traffic management measures, 

may not be possible to take into account when im-

plementing a large-scale model. 

In cases where more detail is required, mesoscopic 

and microscopic models are essential, as they help 

to simulate traffic flows with their profiles, platoon 

dispersion, averaged traffic parameters such as 

queues and delays, saturation flows, etc. 

(mesoscopic models) and the behaviour of traffic 

participants and interactions between individual 

road users (microscopic models). Mesoscopic mod-

els combine macroscopic and microscopic ap-

proaches but provide less reliable information than 

microscopic models. Mesoscopic models make it 

possible to simulate and study the movement of ve-

hicle groups in road sections and intersections (Jaya-

krisham et al., 1994). Mesoscopic models enable the 

identification of critical elements in the transport 

network regarding traffic conditions (due to queues 

and delays). They also help to analyse ways to im-

prove traffic efficiency, such as changes in traffic or-

ganisation, adjustments to traffic signal pro-

grammes, and modifications to the geometry of road 

network elements. These measures can improve 

transport efficiency and road safety (Kristoffersson, 

2013; Sider et al., 2014). The analyses cover the im-

pact of planned improvements on the entire transport 

network of a city or region, road sections with mul-

tiple intersections or individual intersections. 

A microscopic approach can be used for an accurate 

analysis. Microscopic models enable the modelling 

of complex urban street network systems, multi-

modal systems, pedestrian traffic, traffic signals, and 

interchanges. In this approach, each vehicle and pe-

destrian is represented as a separate object (May, 

1990). Due to the higher level of detail, it is possible 

to simulate the interaction between the individual 

objects (Szarata et al., 2023). Consequently, there 

are higher computational requirements for the mod-

elling. Furthermore, to properly develop the micro-

scopic analysis, more time is needed to model the 

individual road network elements and calibrate the 

behaviour of the traffic participants. For this reason, 

it is not practical to consider such a large area scale 

as in software packages for macroscopic or 

mesoscopic modelling. On the other hand, the re-

sults obtained from a microscopic model are more 

precise. Measures such as speed and delay are ob-

tained for each vehicle separately. Emissions can be 

calculated by considering vehicle dynamics and dif-

ferent weight distributions between light and heavy 

vehicles (Acuto et al., 2022; Smit et al., 2007). Mod-

els can be used for the prediction of car crash fre-

quency (L. Wang et al., 2018). Another approach is 

to estimate the number of traffic conflicts by cali-

brating a microscopic simulation to reproduce 
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pedestrian-vehicle interactions based on traffic at in-

tersections (M. S. Hussain et al., 2024). Road traffic 

safety can be analysed by assessing the interactions 

between vehicle trajectories on the road network 

(Cafiso et al., 2018; Hayward, 1972; Oskarbski et 

al., 2020; Tak et al., 2018). Microscopic models help 

to assess the application of different traffic control 

strategies, e.g., how allowing a right turn on red 

(RTOR) manoeuvre affects traffic conditions (Liu et 

al., 2024). The researchers also used a multidiscipli-

nary approach in which they first modelled the sim-

ulated behaviour of water following heavy rainfall 

in the city, and then used microscopic simulation to 

assess how the predicted presence of water on par-

ticular road sections would affect time loss for vehi-

cles (E. Hussain et al., 2018). 

Even if the final results are presented as a sum or 

average value for analysis, they are often considered 

more precise than those derived from macroscopic 

or mesoscopic models because the process leading 

to them is more sophisticated. Microscopic traffic 

simulation software enables the recording of the be-

haviour of all individual traffic participants for each 

time step of the simulation based on rules set by 

three groups of algorithms: car-following, lane 

changing, and gap acceptance (Ahmed et al., 2021). 

Planners and researchers use various software pack-

ages for traffic studies. Various microscopic models 

(as discussed regarding CFM in Section 2.1) have 

been developed over the years and are implemented 

in software offered by different companies. Re-

searchers using specialised software sometimes omit 

important details when selecting and calibrating 

models using default algorithm values. Moreover, 

various models and algorithms can yield different 

research results (Rakha & Gao, 2010). The research 

presented in this article, which utilised the PTV VIS-

SIM traffic simulation software package, considered 

the application of two selected psychophysical car-

following models. 

 

2.1. Microscopic modelling of traffic 

Theory-based CMF describes vehicle interactions 

using mathematical equations to represent driver be-

haviour. In free-flow traffic conditions, the driver 

can move at the desired speed. In forced traffic con-

ditions, if the vehicle following the lead vehicle is in 

relative proximity, the leader's behaviour affects the 

car's behaviour following it. Each vehicle strives to 

travel at the highest possible safe speed and maintain 

a safe distance from the preceding vehicle. These 

conditions are achieved by dynamically adjusting 

speed (accelerating and decelerating). In the scien-

tific literature, we can find many examples of CFM 

based on theory or supervised, unsupervised, and re-

inforcement learning (Ahmed et al., 2021; Han et al., 

2022; Zhang et al., 2024). Among the theory-based 

models, there are kinematic models represented by 

the Gipps Model (Gipps, 1981; Shah et al., 2023), 

Newell’s Model (Meng et al., 2021; Newell, 2002), 

Cellular Automata models (CA) (Benjamin et al., 

1996), General Motors models (GM) also known as 

GHR (Gazis-Herman-Rothery) model (Gazis et al., 

1961), Optimal Velocity Model (OVM)  (Shang et 

al., 2022; Si et al., 2023) and Intelligent Driver 

Model (IDM) (Zhou et al., 2024). The second group 

of theory-based models is psychophysical models, 

of which we can mention the Action Point Model 

(APM) (W. H. Wang et al., 2004) and Fuzzy Logic 

Models (Bennajeh et al., 2018). In addition, adaptive 

cruise control (ACC) and cooperative adaptive 

cruise control (CACC) models were developed in 

the theory-based model group. Unlike the previously 

mentioned models, which aimed to simulate driver 

behaviour and identify disturbances in natural traf-

fic, ACC models were designed to eliminate insta-

bility from the mechanistic view. Among the ACC 

and CACC models, the following can be mentioned: 

linear models (Dias et al., 2015) nonlinear models 

(Y. Wang et al., 2022) and Model Predictive Control 

(MPC) (Cheng et al., 2019). 

The microscopic models presented in this article use 

Wiedemann74 (W74) and Wiedemann99 (W99) 

CFM (Durrani et al., 2016; Wiedemann, 1974; 

Wiedemann & Reiter, 1992). The W74 and W99 

models can be classified as psychophysical models 

because they are not limited to describing the move-

ment of vehicles (i.e. kinematics). These models en-

compass more than measurements of vehicle speed, 

acceleration, and position over time. Instead, 

Wiedemann's models include psychological and 

physiological aspects of driver behaviour, such as 

perception, decisions, and reactions to changes in 

traffic. Models proposed by Wiedemann take a 

slightly different approach and are based on drivers' 

perceptions, as presented in Fig. 1. 
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Fig. 1. Wiedemann car-following model based on (PTV Group, 2022) and (Chaudhari et al., 2022) 

 

The main features of the psychophysical model that 

distinguish it from the kinematic model are the fol-

lowing: 

− Perception and driver decisions: the model con-

siders how drivers perceive distances and 

speeds and how they make decisions about ac-

celerating, braking, and maintaining distance. 

− Zones of action: The model divides the driver's 

reactions into different zones depending on the 

distance to the preceding vehicle, e.g. free-

flowing zone, intended acceleration zone, and 

comfort braking zone. 

− Threshold variables: the model defines differ-

ent thresholds that initiate specific driver reac-

tions, such as the start of braking or accelera-

tion. 

Values present in Fig. 1. can be described as 

(Chaudhari et al., 2022): 

− AX: the desired distance between two vehicles 

in a stopped condition 

− ABX: the desired minimum safe following dis-

tance in the moving state, as a lower limit of the 

following regime 

− SDX: the maximum following distance as the 

upper limit of the following regime 

− SDV: the points at long distances (more than 

SDX) where drivers perceive that they are ap-

proaching slower vehicles 

− CLDV: points at short distances (less than 

SDX) where drivers perceive their speeds to be 

higher than their lead vehicle speeds 

− OPDV: the points at short distances (less than 

SDX) where drivers perceive that they are trav-

elling at a slower speed than the car in front of 

them. 

The Wiedemann 74 model implemented in Vissim 

software (PTV Group, 2022) is based on the as-

sumption that vehicles maintain a desired distance d. 

The desired distance is calculated by equation (1): 

 

d = Ax + Bx 

  

  (1) 

 

Where: 

Ax – “stochastically smeared” base value for stand-

still distance, Bx – value described by equation (2): 
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Bx = (bxadd + bxmult ∗ z) ∗ √v

 

  (2) 

 

Where: 

v – Vehicle speed, z – value from range [0, 1], which 

is normally distributed around 0.5 with a standard 

deviation of 0.15, bxadd , bxmult  – calibration pa-

rameters. 

The speed of a vehicle n in Wiedemann 74 CFM , 

(Rakha & Gao, 2010) is described by equation (3): 

 

un(t + ∆t) = min {
3.6∗(

sn(t) − sj

BX
)

2

3.6∗(
sn(t) − sj

BX∗EX
)

2 , uf} 

  

  (3) 

 

Where:  

un(t + ∆t)  – the speed of the following vehicle at 

time t + ∆t  [km/h], sn(t)  – the vehicle spacing be-

tween the front bumper of the lead vehicle and front 

bumper of following vehicle at time t [m], 

sj  – the vehicle spacing when vehicles are com-

pletely stopped in a queue [m], uf – the space-mean 

traffic stream free-flow speed [km/h], EX – random 

variable describing the minimum distance of follow-

ing vehicles, that can be described by equation (4): 

 

EX = EXadd + EXmult ∗ (NRND − RND2n) 

  

  (4) 

 

Where:  

EXadd, EXmult - calibration parameters, NRND – a 

normally distributed random variable with a default 

mean value of 0.5 and standard deviation of 0.15, 

RND2n - user specified vehicle-specific (where n is 

the vehicle index) normally distributed random var-

iables with a default mean value of 0.5 and a stand-

ard deviation of 0.15. 

Wiedemann 99 model (PTV Group, 2022) is more 

flexible and described by a larger number of param-

eters, CC0-CC9 that are defined as: 

− CC0 - Standstill distance - the distance between 

the subject vehicle's front and the lead vehicle's 

rear bumpers. 

− CC1 – Driver Sensitivity Factor - gap time dis-

tribution (can be calibrated using three macro-

scopic traffic stream parameters, namely: the 

expected roadway capacity, traffic density, and 

free-flow speed) 

− CC2 – Following distance oscillation 

− CC3 – Threshold for entering ‘BrakeBX’ 

− CC4 – Negative speed difference 

− CC5 – Positive speed difference (typically the 

absolute value of CC4) 

− CC6 - Impact of distance on oscillations 

− CC7 – Oscillation acceleration 

− CC8 – Acceleration from standstill (the maxi-

mum acceleration of the vehicle at a speed of 0 

km/h) (m/s2) 

− CC9 – Maximum acceleration of the vehicle at 

a speed of 80 km/h (m/s2)  

These parameters can be related to the values from 

Fig. 1. using the following equations (Aghabayk et 

al., 2013):  

 

AX = L + CC0 

  

  (5) 

 

BX = AX + CC1 ×  v 

  

  (6) 

 

SDX = BX + CC2 

  

  (7) 

 

(SDV)i =
∆x− (SDX)i

CC3
− CC4 

  

  (8) 

 

CLDV =
CC6

17000
× (∆x − L)2 − CC4

  

  (9) 

 

OPDV = −
CC6

17000
× (∆x − L)2 − δ. CC5 (10) 

 

The speed of a vehicle n in Wiedemann 99 CFM, 

(Rakha & Gao, 2010) is described by equation (11): 

 
un(t + ∆t) =

min {
un(t) + 3.6 ∗ (CC8 + 

CC8−CC9

80
un(t)) ∆t

3.6 ∗
sn(t)−CC0−Ln−1

un(t)

, uf}  
(11) 

 

Where:  

un(t + ∆t)  – the speed of the following vehicle at 

time t + ∆t [km/h], un(t) – the speed of the follow-

ing vehicle at instant time t [km/h], uf – the space-

mean traffic stream free-flow speed [km/h], sn(t) – 

the vehicle spacing between the front bumper of the 

lead vehicle and front bumper of following vehicle 

at time t [m], Ln−1 – the effective length of vehicle 

n-1 (the actual length plus a safety margin) [m] 

Regardless of which type of CFM is used in a re-

search project, it is crucial to calibrate and validate 

the models to ensure reliability and an accurate rep-

resentation of reality. Calibrated traffic models can 

provide results similar to real-world values (Otković 

et al., 2020) Often, the calibrated values for certain 
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parameters may significantly differ from the default 

values provided by the model author and software 

provider (E. Hussain et al., 2018). Therefore, it is 

crucial to monitor the quality of the model and vali-

date it with real-world variables. 

 

2.2. Calculation of vehicle emissions using mi-

croscopic models 

Instantaneous models are typically based on laws of 

physics, therefore they are universal and applicable 

to multiple problems. They are suitable for detailed 

evaluation of solutions related to intersections, road 

sections or even subarea networks (Biggs & Akce-

lik, 1986). A model based on the idea that the instan-

taneous power of a vehicle needs to overcome the 

resistive forces is proposed in equation (12) (Leung 

& Williams, 2000): 

 

Zt = Zd + Zr + Za + Ze + Zm (12) 

 

where: 

Zt – instantaneous power equal to the sum of re-

sistances [kW], Zd  – vehicle drive-train resistance 

[kW], Zr – tyre rolling resistance [kW], Za –  aero-

dynamic drag [kW], Ze  – inertial and gravitational 

resistance [kW], Zm – resistance from additional ac-

cessories [kW] 

Based on the value obtained from equation (12), the 

fuel consumption value can then be calculated using 

the following relationship (13) (Leung & Williams, 

2000): 

 

Fc =  γ ∗ EC + β ∗ Zt (13) 

 

where: 

Fc – fuel consumption [ml/min], γ i β – equation co-

efficients, EC  – engine capacity [l], Zt  – total re-

sitances from equation (12). 

CO2 emissions are derived from fuel consumption in 

a ratio of 2.3kg of CO2 per 1 l of gasoline, so the 

model to calculate fuel consumption is also a tool to 

estimate the carbon dioxide emitted by vehicles. 

A different approach that also utilises the dynamics of 

a vehicle is a calculation of Vehicle Specific Power 

(VSP), which can be described in general form by 

equation (14) (Koupal et al., 2005):  

 

VSP = 

(A ∗ v + B ∗ v2 + C ∗  v3 + m ∗ v ∗ a)/m 
(14) 

 

where: 

 VSP – Vehicle Specific Power [kW/metric ton], v – 

speed [m/s - mps], a – acceleration [m/s2], m – mass 

[metric tonnes 1000kg], A – rolling resistance term 

[kW/mps], B – friction term [kW/mps2], C – aerody-

namic drag term [kW/mps3] 

When values of speed, acceleration and road grade are 

known, but resistance-related values are unavailable, 

the VSP model is often utilised by using typical values 

(United States Environmental Protection Agency, 

2002) in equation (15): 

 

VSP =  v[1.1 + 9.81(a tan(sin(grade)))
+ 0.132] + 0.000302v3 

(15) 

 

where: 

 VSP – Vehicle Specific Power [kW/metric ton],A v 

– speed [m/s], a – acceleration [m/s2] 

The VSP can then be transformed into the fuel con-

sumption and emissions estimation, similar to the 

Vehicle Drag approach. While equation (15) is more 

simplified than 16 due to the fewer components in-

cluded, it is still useful especially when the data is 

required to calculate the sum of resistance from eq. 

(12) is not available. One example is the use of VSP 

to estimate emissions using sparse trajectory data 

(Ma et al., 2024). 

 

2.3. Calculation of surrogate safety measures in 

microsimulation modelling 

An accident is an event that occurs unexpectedly and 

unintentionally. For this reason, it is very challenging 

to analyse it directly in microscopic traffic simula-

tions. Intentionally modelling an accident does not 

seem like the right way to approach this problem, as 

it would make an accident not unexpected at all. One 

of the solutions to this problem is to use indirect 

measures, usually called surrogate safety measures 

(SSM). The stochastic parameters adopted in the sim-

ulation models make it possible to define individual 

preferences and trends in traffic users’ behaviour at a 

reasonable level of approximation. Identifying con-

flicts and potentially dangerous situations is possible 

by modelling the relationship between vehicles. 

These relationships must precede an accident (as pre-

sented in Fig. 2.), but they frequently manifest in the 

absence of an accident. Therefore, by analysing 

measures that describe different vehicle approxima-

tions on the road, the relationship between conflicts 
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and potential accident risk can be established (Lau-

reshyn & Várhelyi, 2018).  

The Surrogate Safety Assessment Model (SSAM) 

serves as a tool for gathering and conducting initial 

analyses of SSMs derived from microsimulation 

models (Gettman et al., 2008). The SSAM is a post-

processing tool that utilises vehicle trajectories gener-

ated in microsimulation software packages. The use-

fulness of most algorithms used in microsimulation 

models for road traffic safety assessment is limited 

due to their focus on typical driver behaviour and in-

ability to account for vehicle collisions (Xin et al., 

2008). Certain simplifications are inevitably neces-

sary, even in the most advanced models. Conse-

quently, the significance of the results as representa-

tions of actual road user behaviour may be debatable.  

Assessing road safety at the microscopic level in-

volves using simulation techniques based on surro-

gate measures (Oskarbski et al., 2020).  The mean 

traffic volume, median speed, and instantaneous devi-

ations in the values of volume and speed significantly 

affect the possibility of an incident (Golob et al., 

2004). The most common cause of accidents is insuf-

ficient headway at high vehicle speeds. (Zou et al., 

2023) analysed driver behaviour in highway recon-

struction zones and identified components that affect 

the probability of a conflict. The research results 

suggest that heightened speed, larger vehicle dimen-

sions, and small radius of curved sections are corre-

lated with an increased likelihood of traffic conflicts 

arising. Surrogate safety measures include speed, dis-

tances between vehicles, traffic-related measures, and 

lane change manoeuvres (Archer, 2005). Simulation 

models use measures from traffic conflict theory 

(Essa & Sayed, 2018). Observing sudden braking and 

avoidance manoeuvres helps identify traffic conflicts 

and their connection to real-life accidents (Lord & 

Washington, 2018). Traffic conflict occurs when two 

or more road users approach each other, requiring fast 

and decisive manoeuvres to avoid collision. The 

method involves observing or simulating the road sys-

tem and noting conflict situations that could lead to 

accidents in specific areas.  

The use of simulation to estimate changes in traffic 

safety has also been applied to intersections (M. S. 

Hussain et al., 2024). Researchers used a current un-

signalised intersection to adjust the model. They 

then simulated a scenario with traffic signals to de-

termine the expected improvement in road traffic 

safety resulting from reduced conflicts, despite the 

added delays at red lights. 

Several fundamental indicators, indicative of traffic 

conflicts, have been suggested, e.g., Time To Colli-

sion (TTC), Deceleration Rate (DR) and the time in-

terval between collision vehicles, leaving the collision 

point and arriving at the collision point (Post-En-

croachment Time-PET). The most commonly used 

SSMs of traffic safety in the research was TTC fol-

lowed by PET and their derivatives (Archer, 2005). 

These measures are frequently used in traffic safety 

research to evaluate the importance of potential con-

flicts and their correlation with accident severity (PI-

ARC, 2004). The aggregated data's effectiveness in 

calculating the risk of incident occurrence is uncertain 

(Elvik et al., 2009). However, the ratio of conflicts 

calculated with surrogate measures to accidents is es-

timated to be 20,000 to 1 (Gettman et al., 2008). 

SSMs can replace statistical measures for accidents 

and their victims. Traffic conflict theory represents a 

proactive approach to safety research, allowing for 

analysis and intervention without the necessity of ac-

tual accidents occurring. 

 

2.4. Validation of traffic models 

One of the important aspects of developing a model 

is the validation step. Over the years various method-

ologies customised for conventional traffic modeling 

issues have been suggested. The typical approach for 

model validation is the comparison between real dis-

tributions and distributions obtained from the model. 

An example of such a method is Theil’s U statistic 

presented in equation (16) (Aimsun, 2023), given 

that the calculation is performed for time intervals j  

 

U =  

√∑ (wj − vj)
2m

j=1

m

√
∑ wj

2m
j=1

m
+ √

∑ vj
2m

j=1

m

 (16) 

 

Where: 

wj – simulated flow at time interval j, vj – observed 

flow at time interval j. 

When the values are close to 0 there is little or no 

difference between real and simulated traffic flow 

values. Values between 0.2 and 0.7 require further 

investigation, and values greater than 0.7 are unac-

ceptable. 

 



52 

 

Biszko, K., Oskarbski, J., Żarski, K., 

Archives of Transport, 72(4), 43-73, 2024 

 

 

 
Fig. 2. Pyramid of conflicts based on (Laureshyn & Várhelyi, 2018) 

 

The different metric that is among the most popular 

for validating traffic flow is the GEH statistic (17) 

(Aimsun, 2023; Jastrzebski, 2016): 

 

GEH =  √
2(m − o)2

(m + o)
 (17) 

 

Where:  

m – simulated traffic flow, o – observed traffic flow. 

While the mathematical form is similar to the chi-

squared test it is not a true statistical test (Aimsun, 

2023). Depending on the values obtained from the 

GEH, assumptions can be made: 

− Values lower than 5: Good fit 

− Values between 5 and 10: Further investigation 

is required 

− Values greater than 10: Unacceptable 

Model variables characterising the traffic flow on the 

road network or its components, such as road sections 

and intersections (queue lengths, vehicle spacing, de-

lays, number of stops, speed of the traffic flow or in-

dividual vehicles, etc.) should also be validated (Os-

karbski & Biszko, 2023). 

 

3. Research methodology and model develop-

ment 

It is necessary to gather relevant data to develop a 

microscopic model. Firstly, the scope of the ana-

lysed network needs to be defined. Subsequently, 

data on the traffic flow volume must be collected. 

It's crucial to incorporate public transport details 

when choosing a network to ensure an accurate sim-

ulation of real-life traffic conditions. Furthermore, 

details regarding driver behaviour must be identified 

for a comprehensive simulation. The data obtained 

can then be used as input for the model. A more de-

tailed explanation of these steps can be found in sec-

tions 3.1 to 3.3. 

After completing the model preparation phase, cal-

culations can be performed, and relevant data can be 

extracted. In this research, metrics were calculated 

on three primary subjects: 

1. Traffic conditions 

2. Environmental pollution and energy efficiency 

3. Traffic safety 

Although the values for traffic conditions can be ob-

tained directly from the VISSIM software, addi-

tional external calculations and analyses are required 

for the metrics related to environmental issues and 

traffic safety. The process of obtaining these values 

was described in Sections 3.4 and 3.5. 

 

3.1. Transport network 

A test site was chosen to be located on a stretch of 

provincial road no. 468 ("Morska" street) in Gdynia 

city. This stretch has a two-by-two-lane cross-sec-

tion with two lanes in each direction, separated by 

barriers. The specific location includes three inter-

sections with traffic signals: "Owsiana" Street, 

"Zbożowa" Street, and "Kcyńska" Street. 

The chosen section of the network was replicated in 

the PTV Vissim microscopic traffic modelling soft-

ware, with consideration given to actual traffic sig-

nal patterns, traffic management, and public 
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transport (PT) stops. Authentic traffic signal sched-

ules were acquired from the Authority of Roads and 

Greenery in Gdynia. The developed road network 

model and the location of bus stops is presented in 

Fig. 3. 

The City of Gdynia has a functioning Intelligent 

Transport System (ITS) called "TRISTAR". The 

designated testing features induction loops installed 

in the pavement near intersection entries and exits. 

This setup allows for the collection of specific traffic 

data.  

Traffic volume data was collected over three repre-

sentative weeks in October 2022. Subsequently, this 

data underwent processing to extrapolate the traffic 

patterns for each hour on typical days of the week. 

This methodology enables the identification of peak 

traffic hours, which served as the focal point for sub-

sequent analysis.  

The induction loops enable the capture of the vehicle 

type, thereby allowing the calculation of the propor-

tion of heavy vehicles on the road. Utilising the PT 

timetables available on the public transport authori-

ty's website the authors of this paper documented the 

details concerning the number of buses and their re-

spective departure times. 

The traffic flow volume, including the share of 

heavy vehicles and buses, was then inputted into the 

microscopic model. 

 

3.2. Driver behaviour modelling 

Induction loops connected to the TRISTAR system 

are usually placed so that it is possible to record the 

speed of vehicles passing through them. The data is 

recorded for every vehicle separately and can be uti-

lised to create a speed distribution. Modelling speed 

in microscopic traffic simulation is based on adjusting 

the desired speed that drivers want to travel. The 

speed is simulated based on the presence of other ve-

hicles and obstacles on the road. Therefore, to cali-

brate the model, the speed distribution during free-

flow traffic should be extracted from the available 

data and used as a parameter. After simulation, the ac-

tual speed distribution recorded during the peak hour 

at the intersection should closely match the values cal-

culated in the simulation for the peak hour scenario. 

The model does not consider the actual distribution of 

speeds during peak hours, using only the free-flow 

speed distribution. Data on actual speed is solely used 

to validate the model, employing data from a separate 

control group. 

Speed data gathered from induction loops near the in-

tersection are distorted due to manoeuvres such as 

turning, which require drivers to slow down. The au-

thors of this paper decided to use the data from induc-

tion loops embedded in pavement near a signalised 

pedestrian crossing, located on a road section of the 

same road. This strategy avoids interference from 

turning manoeuvers, as all vehicles in this road sec-

tion move forward and stop to let pedestrians pass 

only during green time. Precise times of beginning 

and ending, for every traffic signal connected to the 

Intelligent Transportation System were recorded. The 

start and end times of the green signal were mapped 

to the time stamps of the vehicles that passed through 

the induction loops. Given that upon the start of the 

green signal, drivers need some time to ramp up their 

speed, every data recorded up to 30 seconds after the 

beginning of the green signal was discarded. All data 

for signals other than green were also discarded be-

cause, e.g. during a red signal, a driver may slowly 

drive through the induction loops while approaching 

the traffic lights, intending to stop. It was also men-

tioned that the recorded speed should be related to 

movement in free-flow traffic, as the presence of other 

vehicles might influence the actual speed, which will 

be lower than the desired speed. Since there are two 

lanes in each direction, it was determined that only 

values where the total traffic flow volume is consid-

erably low are to be considered. A threshold value of 

30 vehicles per 15 minutes was set in every direction. 

This means that traffic volumes were considered 

where, on average, there was no more than 1 car per 

minute in either lane. 

Fig. 4. presents the speed values depending on the 

time elapsed from the beginning of the green signal. 

Signalised pedestrian crossings change their signal 

upon manual activation from a pedestrian. Therefore, 

during nighttime hours, without pedestrians present, 

there can be a very long green signal for vehicles that 

lasts several hours. In Fig. 4. the blue colour shows all 

of the recorded values. The orange colour shows the 

values filtered under the conditions of undisturbed 

free-flow traffic. The speed distribution obtained from 

the selected data is shown in Fig. 5.a. The speed limit 

on Morska Street is 50 km/h, and only 10% of drivers 

adhere to it. Another value used in microscopic mod-

elling is the time interval (headway) between vehi-

cles, i.e. the time difference between two appearances 

on a single point. Unlike speed, this variable should 

be recorded under traffic conditions with a high 
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volume of vehicles. This headway represents the "safe 

space" a driver chooses to maintain following another 

car. Therefore, the following does not occur in free-

flow traffic conditions. For this reason, the distribu-

tion of time intervals was extracted for vehicles that 

passed through induction loops when the traffic flow 

was at least 400 vehicles in 15 minutes per direction. 

The results are presented in Fig. 5. b. 90% of the rec-

orded values fall within an interval of up to 5 seconds. 

It was decided to discard values above 10s, due to the 

disappearance of the car-following effect at such large 

intervals. 

 

 
Fig. 3. Network modelled in PTV Vissim software 

 
 

 
Fig. 4. Vehicle speed concerning the time after the start of the green signal 
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a) 

 
b) 

Fig. 5. a) Distribution of speed in free-flow traffic, b) Distribution of time intervals between vehicles 

 

3.3. Travel times of public transport vehicles 

Public transport operates according to schedule. How-

ever, high traffic volumes and congestion also affect 

buses travelling on roads shared with private vehicles. 

Due to that, an attempt was made to evaluate the real 

travel times of city buses that pass through the test 

site. On-board GPS units for Automatic Vehicle Lo-

cation (AVL) systems addressed this rather than as-

suming that PT vehicles adhere perfectly to their 

schedules. 

The scope of the test site allows for the analysis of 6 

different segments between pairs of PT stops. 

The stops are located differentially to the intersections 

with traffic lights and the distances between each pair 

of stops are various. There are numerous methods for 

calculating travel times between two stops, some of 

which may include dwell times. These methods as-

sume calculating travel time from the arrival of a PT 

vehicle at a bus stop to its arrival at the next stop, from 

departure to departure, from departure to arrival, and 

from arrival to departure. Two ways of calculating 

travel times between stops that were included in this 

study are presented in Fig. 6.: 

1) travel time between the departure of a PT vehicle 

from stop A and its arrival at stop B (smaller val-

ues, depicted in blue),  

2) travel time between the departure of a PT vehicle 

from stop A and its departure from stop B (larger 

values, depicted in orange).  

The main purpose of this analysis is to study the im-

pact of traffic conditions on PT travel times, however 

can also serve as a validation method. The input data 

for the model consists of timetables, while the model's 

output provides the time required to travel through the 

network under current traffic volumes. Therefore an-

alysing GPS data from the PT vehicles aims to deter-

mine the average travel time, which is affected by 

some factors: traffic conditions, the behaviour of bus 

drivers, traffic control scenarios using traffic signals, 

etc. Another important aspect is the accuracy of the 

GPS receivers installed in the vehicles and the method 

to determine the moment of arrival and departure. An 

analysis was conducted at six stops to identify poten-

tial measurement errors in the TRISTAR system AVL 

data. This analysis involved comparing manual meas-

urement of actual arrival and departure times with val-

ues recorded directly by the system. The measure-

ments were conducted using footage from cameras lo-

cated at bus stops. Subsequently, average travel times 

were calculated based on the days from which the av-

erage traffic volume values were derived. 

 

3.4. Calculating energy and emissions based on 

movement resistance 

The model described in Section 2.2 was employed 

for calculating energy consumption and emissions. 

The equations were implemented in an external 

module as a code written in the C++ programming 
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language, following the documentation and tem-

plates provided by the software vendor. The module 

was designed to allow for the use of various equa-

tions for different types of vehicles in the micro-

scopic modelling software. This flexibility enables 

the application of different coefficient values, such 

as representing varying air resistances for passenger 

cars and heavy vehicles. In addition, the weight dis-

tribution is a parameter that can be introduced di-

rectly into the modelling software. The module to 

calculate emissions pulls the mass value assigned to 

each vehicle separately. 

Given the calculation method, CO2 emissions de-

pend on the vehicle's fuel consumption, and fuel 

consumption depends on the energy required for the 

car to move. In addition to the directly calculated 

values, internal combustion engines continue to op-

erate even when the vehicle is stationary and re-

quires no energy due to the lack of movement. This 

additional component has been included in the cal-

culations.  
 

3.5. Calculating safety using surrogate safety 

measures 

Surrogate safety measures were examined to assess 

road traffic safety. To achieve that the trajectories of 

vehicles were first extracted from the simulation 

model in a separate file with .trj (as trajectory) for-

mat. Then, external software SSAM3 (Surrogate 

Safety Assessment Method) was used to process the 

files. The measures that were selected for further 

analysis are: 

1) Total number of conflicts 

2) “MaxDeltaV” 

3) Time to collision (TTC) 

The upper threshold for an encounter to be considered 

a conflict was set at 1.5 seconds to estimate the level 

of road traffic safety. Recorded conflicts can then be 

divided into three main groups based on the angle at 

which trajectories intersect, as shown in Fig. 7. 

Time to collision (TTC) represents the value of time 

left to a collision between two vehicles if neither ve-

hicle takes any action to avoid it (Hayward, 1972). 

When analysing conflicts, it is imperative to note that 

TTC values cannot reach zero seconds. This is be-

cause a zero-second TTC would signify a collision, 

and in a simulated environment, vehicular behaviour 

is typically structured to mitigate the accident occur-

rence. Equation (18) can be used to calculate TTC. A 

minimum assumed TTC value (TTCmin between 0.1 

s and 1.5 s) was adopted to define the traffic conflict 

occurrence. 

 

TTCi =  
Xi−1(t) − Xi(t) − li 

Ẋi(t) −  Ẋi−1(t)
      ∀Ẋi(t)

>  Ẋi−1(t) 

(18) 

 

where: 

X -vehicle position, Ẋ - vehicle speed, i - vehicle fol-

lowing the leader, i − 1 -lead vehicle, t -moment in 

time, l -vehicle length. 

 

 
Fig. 6. Average travel times during a typical weekday between two example stops 
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Fig. 7. Conflict types based on (Gettman et al., 2008). 

 

In the event of a conflict, at least one of the vehicles 

is moving at a certain speed. The maximum speed dif-

ference between the vehicles involved in a single con-

flict is called MaxDeltaV. A larger MaxDeltaV value 

increases the risk of an accident and its potential se-

verity. The severity of traffic conflict can be deter-

mined by comparing the trajectories of two vehicles 

in terms of direction and speed at the moment of 

TTCmin occurrence. A conflict is considered severe 

when the speed difference between vehicles is more 

than 20 km/h (Yan et al., 2008). 

 

4. Model calibration and validation 

The simulation model was developed using the 

methodology presented in Section 3. The modelling 

software enables two car-following models to be 

used: Wiedemann 74 (W74) and Wiedemann 99 

(W99). According to the PTV Vissim user guide rec-

ommendations (PTV Group, 2022), the models are 

pre-calibrated to suit the needs of city-oriented be-

haviour in W74 and motorway-oriented behaviour in 

W99. Although the test location is in an urban area 

and the W74 CFM should be suitable, some im-

portant specific aspects of the recorded driver be-

haviour may deviate from the assumptions of this 

model in Polish traffic conditions. Drivers tend to 

disobey speed limits. Additionally, the geometry of 

the urban arterial (two lanes in each direction, phys-

ically separated by barriers) can influence driver be-

haviour. 

Free-flow vehicle speed has been adopted for both 

models based on results presented in Fig. 5a. The 

W74 model with its initial parameters was decided 

to be used for the study. To adapt the W99 model to 

the recorded driver behaviour, the distribution of the 

headways between vehicles was set according to 

Fig. 5b. The remaining modifiable parameters were 

left as default values. Given that the model is based 

on urban ITS data, there are some limitations on the 

variables that can be verified due to data availability. 

This also demonstrates a potential problem for nonre-

search projects, where traffic engineers attempt to de-

velop models but lack adequate data. In the calibration 

process, if the driver behaviour characteristics ob-

tained with the default parameters are not satisfied, 

the parameters are often changed incrementally with 

a preset step. The calibration process continues until 

the modeller is satisfied that convergence between the 

model and reality has been achieved. 

A validation was conducted to verify which car-fol-

lowing models can better represent reality. The varia-

bles that were analysed are as follows: 

1. Number of vehicles that passed through the mod-

elled network 

2. Vehicles speed 

3. Public transport travel times 

The detailed process of model validation is presented 

in Sections 4.1-4.3. 

 

4.1. Validation of traffic flow values with GEH  

Once the traffic flow values obtained from the test site 

have been input into the model, verification is re-

quired to ensure that the number of vehicles input into 

the model can pass through the simulation network. 
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The model output may be lower in traffic volumes 

than the input data in the case of heavy congestion oc-

curring on the modelled network (while the real-life 

conditions are better). Data was collected at each in-

tersection exit (3 intersections with a total of 4 exits) 

to check whether this aspect of the model represents 

reality. In this case, only vehicles that have success-

fully reached the intersection exit are counted, not just 

those that have entered the network. 

A GEH metric was used for this validation. Traffic 

flow values were calculated for the W74 and W99 

car-following models at all intersection exits men-

tioned. The results are presented in Table 1. Satis-

factory GEH results were recorded for both models: 

GEH values below 3 at 11 of the 12 points of the 

network. In general, coefficient values below 5 are 

considered correct, and this condition was met com-

pletely.  

The implication is that, regardless of the CFM model 

used, there is a convergence between the traffic vol-

umes calculated in the simulation and the values ob-

served at the test site.  

 

4.2. Convergence between vehicle speed distri-

butions 

The speed distribution that was an input to the model 

represents the desired speed. The distribution ob-

tained from the model reflects the speed influenced by 

traffic conditions. The exits of an intersection located 

in the middle of the modelled network were chosen as 

suitable measuring points. The data obtained from the 

test site and simulations with both CFMs were com-

pared. The findings are illustrated in Fig. 8a. These 

data represent the speed distribution during a typical 

peak hour. For an alternative visual representation, the 

distribution values were standardised and then plotted 

in Fig. 8b. The x=y line on the graph reflects the ob-

served values. Therefore, the closer the plotted values 

of the W74 and W99 models are to the x=y line, the 

more similar the distributions are. In this instance, 

W99 CFM yields better results, as evident in Fig. 8a. 

It is significant to note that this similarity arises due to 

the slower speed of vehicle movement. What's crucial 

here is that the desired speed distribution input is iden-

tical for both CFMs, and the W74 model is intended 

to be more suitable for urban traffic. However, vehi-

cles in the W74 model travel at higher speeds, result-

ing in a greater disparity between the simulation and 

real-world speed distributions. 

The distributions calculated from the two CFM mod-

els are relatively similar, providing no solid basis for 

rejecting either model used in the simulations. 

 

4.3. Comparison of public transport travel times 

Public transport travel times were calculated in the 

model using methods presented in Section 3.3. This 

allows comparison between values obtained through 

the microscopic simulation and values obtained from 

GPS. The PT sections included in the model are 

shown in Table 2. The results of the travel times cal-

culation are presented in Table 3. 

Additionally, in Table 2 the comparison between the 

data from the AVL system and manual measurements 

are presented, as discussed in Section 3.3. Every sec-

tion is described by two numbers corresponding to 

Fig. 3. The presented results show travel time without 

considering dwell time at a stop (Departure-Arrival - 

D-A). Travel time includes only the traffic conditions 

between stops. Due to local conditions during the 

study, measurements could not be performed for two 

sections. Mean Average Error (MAE) and Mean Ab-

solute Percentage Error (MAPE) were calculated for 

the measurements, showing the range of errors rela-

tive to the average travel time on the sections. It is ev-

ident that on the shortest section between stops, the 

travel time is characterised by a high MAPE of around 

30%. This results from the GPS measurement tech-

nique, which is not fully precise, as verified by man-

ual measurements. This is related to errors in vehicle 

identification at the stop. There are no significant dif-

ferences in MAE in the remaining sections, but they 

result in approximately 10% MAPE. Because of these 

differences, one can expect that in the case of further 

comparisons with simulation data, there may also be 

larger differences in average travel times.  

 

 

Table 1. GEH coefficient for the exits of each intersection 

Intersection exit no. 1 2 3 4 5 6 7 8 9 10 11 12 

W74 0.84 3.35 1.1 1.07 0.53 1.33 0.96 1.68 0.00 0.28 2.54 2.53 

W99 0.39 3.43 1.1 0.72 0.53 1.35 0.84 0.37 0.08 0.28 2.43 0.64 

 



Biszko, K., Oskarbski, J., Żarski, K., 

Archives of Transport, 72(4), 43-73, 2024 

59 

 

 

 
a) 

 
b) 

Fig. 8. a) speed distributions at the exits of the junction, b) comparison of Z-score values of distributions from 

the model with measured values 

 

Table 2. PT Sections included in the model 

Section Stops name Length [m] 
Average D-A 

system [s] 

Average D-A 

measured [s] 
TT MAE [s] TT MAPE [%] 

1-2 Kcyńska-Zbożowa 285 30 31 3 11.52 

2-3 Zbożowa-Owsiana 444 51 54 3 7.46 

2-4 Zbożowa-Jarzębinowa 488 No data 

5-6 Jarzębinowa-Owsiana 210 No data 

6-7 Owsiana-Zbożowa 454 48 45 5 13.29 

7-8 Zbożowa-Kcyńska  178 11 12 3 30.01 

 

According to Irish traffic modelling guidelines 

(Transport Infrastructure Ireland, 2023), the results 

are considered acceptable if at least 85% of the val-

ues obtained from a model have an error of less than 

15% or an error of less than 1 minute. In approxi-

mately 50% of the evaluated sections, the simulated 

travel time is around 5% (1% to 7%) compared to 

the actual measured travel time, accounting for bus 

stop delays (Departure-Departure - D-D). In partic-

ular, travel times demonstrate insignificant vari-

ances across the various CF models.  

In typical cases, travel times for microsimulations are 

verified on longer measurement sections to minimise 

the impact of individual cases with atypical behav-

iours. However, in this paper, the authors attempted to 

validate travel times on short sections, which poses a 

challenge due to the limited sample of PT vehicles. 

The authors stress the need to refine the methodology 

for validating the model with PT vehicle travel times 

to improve the study. 

Since the sections between two stops are based on the 

real locations of the public transport stops from the 

test site, the length of these sections varies according 

to the transport network. This means that some dis-

tances are very short. For example, the section 7-8 is 

approximately 180 meters long. Because of this, a dif-

ference in travel time of only a few seconds can result 

in an error larger than 20%. However, this error of just 

a few seconds in public transport travel time typically 

indicates high precision in the model's performance. 

Considering all the values obtained in Table 3, both 

the W74 and W99 models perform relatively well. 

Given that sections of the network are short, it is hard 

to obtain values with a precision of seconds. There is 

a randomness component to simulation, so tailoring 

the values to be exact for one simulation run might 
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result in discrepancies for different simulation runs. 

None of the obtained times was longer than 1 minute, 

and for public transport in the city of Gdynia, the ac-

ceptable deviation of bus travel is from -60s up to 

+180s from the scheduled time. On top of that, in real 

life bus drivers adjust their travel time dynamically by 

travelling through some of the road sections faster or 

slower, in order to arrive at the bus stop closer to the 

scheduled time. This behavior could not be repro-

duced in the simulation. To further improve the qual-

ity of the results, it might be necessary to distinguish 

different driving styles in terms of PT or investigate 

local disturbances, specific to particular stops. These 

aspects can then be included in the model. On the 

other hand, if the goal is to consider only typical val-

ues, the above findings can be used to exclude certain 

test site data. This ensures that only representative re-

sults are used for validation. 

 

4.4. Validation summary 

The main conclusion that can be drawn from Section 

4 is that in the validation process, both the W74 and 

W99 car-following models provided results similar 

to those measured at the test site. Despite being de-

signed for highway traffic, the W99 model per-

formed slightly better, most likely due to the adapta-

tion of time interval distribution. If we consider typ-

ical threshold values to determine convergence, 

there is no basis to reject either of the applied CFMs 

for further analysis. 

 

5. Results  

The results for the baseline scenario were initially 

examined during the validation process. 

The following scenarios are assessed in this Section: 

1. Baseline scenario - validated model (measured 

traffic volumes and speed distributions, no 

change in traffic control, permission of Right 

Turn on Red) 

2. Prohibition of Right Turn on Red (RTOR) 

3. Traffic flow volume increased by 20% 

4. Combined Scenarios 2 and 3: prohibition of 

RTOR and traffic flow volume increased. 

These scenarios are later referenced as Scenario 1, 

Scenario 2, Scenario 3, and Scenario 4. 

Scenario 2 is supposed to represent one possible 

strategy that can be introduced at signalised intersec-

tions. Scenario 3 is intended to represent an increase 

in the number of vehicles, which may occur tempo-

rarily due to additional seasonal traffic in this area, 

or permanently when considering traffic forecasts 

for the upcoming years. All scenarios were exam-

ined using both W74 and W99 models. The results 

were collected for a single hour with the highest 

traffic volume of the day. To better represent real-

life conditions, the simulation network was warmed 

up for one hour before the result data collection, us-

ing traffic flow volumes that mirrored those occur-

ring before the peak hour. 

The findings in Section 5.1 relate to the traffic con-

ditions derived from the simulation VISSIM soft-

ware and the external energy and emissions module 

embedded in the simulation. Section 5.2 outlines the 

safety-related measures calculated by analysing ve-

hicle trajectories extracted from the simulation using 

separate SSAM software. 

 

5.1. Results of microscopic modelling 

The initial set of analysed findings includes the aver-

age delays per vehicle while travelling through the 

simulated network, the average CO2 emissions gener-

ated idly per vehicle during the time spent in the net-

work (calculated independently of the energy required 

to overcome resistances), as well as the total CO2 

emissions and overall energy consumption for travel-

ling through the network. The energy value represents 

the resistances that must be overcome for the vehicles 

to move (according to the description in Section 2.2). 

In vehicles with internal combustion engines, energy 

is generated through fuel consumption For electric ve-

hicles, this energy can be derived from the car battery 

while accounting for losses, which can be attributed 

to using lights, air conditioning, and other factors. 

When vehicles are stationary and do not actively over-

come resistances, the value of equation (12) will be 

zero on multiple occasions. The "idle CO2" emissions 

are presented separately to account for this phenome-

non. 

In total, 8 different models were analysed (scenarios 

1-4 for both W74 and W99 models), and the results 

are presented in Table 4 and Fig. 9. 

The prohibition of conditional right turns during red 

signals and the increased traffic flow volume in sce-

narios 2, 3, and 4 lead to higher emissions and delays. 

It was noted that the energy required for vehicles to 

move is slightly lower in scenarios where no condi-

tional right turns are allowed. 

Additionally, using the W99 car-following model re-

sulted in higher values for emissions, energy required, 

and delays.  
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Table 3. Average travel times [s] between pairs of stops. A – Arrival, D- Departure 

Section 
Measured W74 W99 W74/Measured W99/Measured 

D-A D-D D-A D-D D-A D-D D-A D-D D-A D-D 

1-2 36 69 43 63 45 68 +7 19% -6 -8% +9 25% -1 -1% 

2-3 62 97 56 77 43 64 -6 -10% -20 -21% -19 -31% -33 -34% 

2-4 70 110 59 77 57 77 -12 -16% -32 -30% -13 -18% -33 -30% 

5-6 73 113 97 118 99 120 +24 32% +5 4% +26 35% +7 6% 

6-7 46 75 57 78 57 78 +11 24% +3 4% +11 24% +3 4% 

7-8 13 52 17 39 17 39 +4 28% -13 -25% +4 32% -13 -25% 

 

Since the microscopic simulation only covers a por-

tion of the network during the simulation period, the 

total energy or emissions value for a complete vehicle 

travel remains unknown. The results are specific to 

the modelled area. So in some cases, the total energy 

value required was lower for scenarios with worse 

traffic conditions, as in the scenario assuming the pro-

hibition of conditional right-turn. This reduction in 

energy usage occurred because vehicles no longer en-

gage in constant "stop-and-go" movements during red 

lights when a queue of cars gradually merges into on-

going traffic. In scenarios 2 and 4, the energy calcu-

lated based on equation (12) was slightly lower com-

pared to the corresponding scenarios, as traffic re-

sistances were non-existent when the vehicles 

remained stationary. However, scenarios where con-

ditional right turns are not allowed experienced higher 

delays and related idle CO2 emissions. 

When considering relative changes, the values vary 

among different scenarios and models. This variation 

primarily occurs because the models are based on dif-

ferent equations, resulting in differing simulated 

driver behaviour under changing conditions, even 

when the modifications to the base scenario are con-

sistent. Furthermore, implementing various calibra-

tion processes concerning the W74 and W99 parame-

ters in addition to the speed distribution and the distri-

bution of time interval (headway) between vehicles 

may also impact the results across different scenarios. 

 

Table 4. Idle CO2 emissions, average delays and total energy required in each scenario and change concerning 

base scenario 1. 

Scenario Model Idle CO2 [g/km] Avg. delays [s] 
Total energy required 

[kWh] 

1 
W74 31 47 1220 

W99 35 64 1510 

2 

W74 33 56 1215 

Change 6.45% 19.15% -0.41% 

W99 39 78 1501 

Change 11.43% 21.88% -0.60% 

3 

W74 36 66 1394 

Change 16.13% 40.43% 14.26% 

W99 39 77 1736 

Change 11.43% 20.31% 14.97% 

4 

W74 43 92 1411 

Change 38.71% 95.74% 15.66% 

W99 47 104 1694 

Change 34.29% 62.5% 12.19% 
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Fig. 9. Total CO2  emissions and average delays in analysed scenarios 

 

5.2. Results on surrogate safety measures 

In different scenarios, different SSM values were cal-

culated. A comparable number of traffic conflicts 

were observed for the base scenario, with only 3 more 

for the W74 model. In all other scenarios, there were 

fewer conflicts when using the W74 model for calcu-

lations. Table 5 and Fig. 10. present the total number 

of traffic conflicts based on the scenario. The prohibi-

tion of conditional right-turn signals with base traffic 

flow volume led to fewer conflicts for W74 and more 

for W99 than the baseline scenario.  

Adding extra traffic flow into the simulation led to a 

higher frequency of potentially dangerous situations. 

The increase in the number of conflicts varied for each 

CFM. Specifically, a 20% increase in traffic volume 

resulted in a 31% increase in traffic conflicts for W74 

and a 52% increase for W99. Removing conditional 

right turns with increased traffic led to a rise in traffic 

conflicts, in contrast to scenarios where only the base 

traffic flow was considered. When comparing sce-

nario 4 to scenario 3, there was a 10% increase in traf-

fic conflicts for W74 and a 16% increase for W99. As 

for comparing scenario 4 to scenario 2, the number of 

traffic conflicts increased by 56% for W74 and 53% 

for W99. When considering the baseline scenario, 

these differences resulted in a total increase of 45% 

for W74 and 78% for W99. The conflicts mainly com-

prised rear-end conflicts (from 382 to 727), with sig-

nificantly fewer lane-change conflicts (34 to 69) and 

just a few crossing conflicts. 

 

Table 5. Total number of conflicts for each analysed scenario 

Scenario CFM crossing lane change rear end total 

1 
W74 1 34 419 454 

W99 1 49 401 451 

2 
W74 1 38 382 421 

W99 1 51 466 518 

3 
W74 1 53 544 598 

W99 1 65 620 686 

4 
W74 2 48 607 657 

W99 1 69 727 797 
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Fig. 10. Total number of conflicts for each scenario 

 

The proportion of traffic conflicts in each class of 

MaxDeltaV values for the different scenarios is 

shown in Fig. 11. In general, worse traffic conditions 

contribute to conflicts at lower speed differences be-

tween vehicles. For the scenarios with increased 

traffic volumes, both the scenarios allowing condi-

tional right turns and the scenarios prohibiting them, 

despite a higher total number of conflicts, the 

MaxDeltaV distribution contains more values up to 

5 km/h than for the scenarios with baseline traffic 

volumes. In the case of severe conflicts (difference 

in speed between vehicles of more than 20 km/h), 

more traffic conflicts occur in the scenarios with 

RTOR prohibition as shown in Fig. 12. The lower 

number of severe traffic conflicts is due to the elim-

ination of the situation where vehicles travelling 

from the minor entrance meet the traffic stream trav-

elling at higher speeds on the major road. As traffic 

volume increases, the number of severe conflicts 

also rises. 

The cumulative distributions for each scenario are de-

picted in Fig. 13. The significant observation is the 

clear distinction between the distributions at 1.0 s and 

1.2 s. This indicates that there were more conflicts 

with a shorter time to collision in W99 CFM. In es-

sence, utilising the W99 model resulted in more in-

stances where the potential collision was at a closer 

proximity.

 

 
Fig. 11. Distribution of different MaxDeltaV values among scenarios for all conflicts 
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Fig. 12. Distribution of different MaxDeltaV values among analysed scenarios  for severe conflicts 
 

 
Fig. 13. Distribution of TTC values among analysed scenarios 

 

Table 6 shows a compilation of conflict heatmaps for 

the analysed scenarios. Regardless of the scenario, it 

is evident that the largest clusters of traffic conflicts 

occur in the major approaches at the intersection with 

Owsiana Street, on the western side of the intersection 

with Zbożowa Street, and on the eastern side of the 

intersection with Kcyńska Street. These findings have 

arisen due to specific local conditions and the for-

mation of clusters of traffic conflicts at the end of the 

vehicle queue at intersection entrances. During the 

most congested hour of the day, the afternoon peak, 

traffic from east to west (passing through intersections 

with Kcyńska, Zbożowa, and finally Owsiana Street) 

is predominant. As a result, the traffic signals are stra-

tegically set to prioritise the smooth flow of vehicles 

in this direction. Consequently, there are fewer traffic 

conflicts on the eastern side of Zbożowa Street as 

most vehicles move without interruptions from 
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Kcyńska Street. However, some drivers face chal-

lenges to catch the green wave at the intersection with 

Owsiana Street. On the other hand, traffic flow in the 

opposite direction (vehicles passing through intersec-

tions with Owsiana, Zbożowa, and finally Kcyńska 

Street) experiences lighter traffic volume, resulting in 

fewer conflicts on the western side of the intersection 

with Owsiana Street. This is due to the signal settings, 

making it impossible for most vehicles to pass 

through the intersection with Zbożowa Street without 

stopping. This leads to increased conflicts on the 

western side of the middle intersection. At the same 

time, the green signal at the Zbożowa Street intersec-

tion allows many vehicles to pass through the inter-

section with Kcyńska Street without stopping, leading 

to fewer conflicts on the western side of the intersec-

tion with Kcyńska Street. 

Comparing the changes between the scenarios shows 

that: 

1) The increase in traffic volume generally contrib-

utes to more conflicts, which take place in the 

same locations as under the baseline scenario 

2) The prohibition of RTOR increases the number 

of conflicts at minor entrances, which are the 

main beneficiaries of this manoeuvre, especially 

in a traffic growth scenario (however, the sever-

ity of the conflicts is reduced, as shown in 

Fig. 12) 

3) The use of different CFMs contributes to the var-

iable number of conflicts and partly affects the 

location of the conflicts' clusters, mainly due to 

differences in the area of the end of vehicle 

queues and the frequency of their occurrence. 

 

5.3. Discussion 

The conducted research revealed that using different 

car-following models yields varying results, despite 

similar values being calculated in the validation pro-

cess and similar traffic volumes and conditions in the 

baseline scenarios. The results, calculated from simu-

lations highlight the significance of driver behaviour 

in different car-following models, which can ulti-

mately affect the outcomes. Interestingly, these differ-

ences were not identified during the model validation 

process. In this study, no single car-following model 

was conclusively determined to be superior to the 

other. Rather, the differences in results stem from ini-

tial decisions made in reproducing driver behaviour, 

highlighting the need to refine this process. There is 

an inherent risk that individuals seeking to 

substantiate a particular stance on safety may selec-

tively utilise models that support their preconceived 

beliefs. Notably, when changes were implemented to 

the baseline scenario, both models demonstrated in-

creased delays and CO2 emissions, with W99 yielding 

higher values. Regarding traffic safety, the number of 

conflicts was comparable for both models under ex-

isting conditions, but scenarios with additional traffic 

flow volume simulated using W99 resulted in signifi-

cantly more conflicts than W74. This situation pre-

sents two main challenges:  

1) There is currently no reliable method of valida-

tion that can confirm with a high degree of cer-

tainty that the model accurately represents reality 

when assessing chosen measures, like traffic 

conflicts or emissions.  

2) There is a practical limit to the amount of data 

that can be collected and processed to facilitate 

the development of a detailed simulation. 

To address the first issue, thorough research on driver 

behaviour dynamics and its simulation replication is 

crucial. For instance, drivers can be classified into dif-

ferent categories based on driving style, and the dis-

tribution of each driving category should be deter-

mined. In addition, detailed variables such as speed, 

acceleration/deceleration distribution, car follower 

behaviour, lane change tendencies, and response to 

traffic signals need to be established for each cate-

gory. However, this emphasis on detail highlights the 

challenge of obtaining such granular data in a general 

research scenario. When developing microscopic 

models for regular use, traffic engineers may struggle 

to collect and process the extensive data needed to 

meet these requirements for accurate traffic analysis 

and forecasting.  

Comprehensive guidelines should be established to 

outline specific procedures for data collection, pro-

cessing, and model validation when developing mi-

croscopic simulation models. Establishing standards 

for these processes would benefit researchers and traf-

fic engineers, leading to more efficient and consistent 

model development. Although each road scenario 

may have unique features that require accurate repre-

sentation, the guidelines should ensure that these fea-

tures can be effectively incorporated. Uniform guide-

lines should aim to facilitate consistency and effi-

ciency in microscopic model development, rather 

than restrict the accurate representation of real-world 

factors. 
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Table 6. Conflict heatmaps for analysed scenarios 

Scenario: Wiedemann 74 Wiedemann 99 

1 

  

2 

  

3 

  

4 

  
 

The second crucial aspect of the guidelines should in-

clude standard parameters that can be adjusted in 

models if the person or institution responsible for 

model development cannot implement the procedures 

outlined above. Considering the potential significant 

variations in driver behaviour across different set-

tings, it is advantageous to categorise these 

parameters into as many subgroups as possible. These 

may include, but are not limited to, behaviours related 

to: 

1) Location: country, region, rural or urban area 

(recognising that different cities may exhibit dif-

ferent behaviours)  
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2) Road infrastructure type: road segments with 

different numbers of lanes, different types of in-

tersections, and interchanges. 

In addition to variations caused by the application of 

different CFMs, several key observations apply to 

the obtained results: in better traffic conditions, con-

flicts at higher speed differences between vehicles 

arise more frequently; an increase in traffic flow vol-

ume leads to a greater number of traffic conflicts; 

increase in traffic flow volume coupled with the pro-

hibition of RTOR (which leads to deteriorating traf-

fic conditions), results in a higher number of traffic 

conflicts and a lower proportion of conflicts occur-

ring at higher speed differences. Generally, esti-

mated emissions values exhibit the opposite trend, 

such that improved traffic conditions lead to lower 

emission values. Congested roads lead to increased 

emissions due to frequent stop-and-go movements. 

However, because vehicles are moving slowly, 

fewer severe conflicts occur. Although the overall 

number of traffic conflicts may increase in heavily 

congested scenarios, the lower speeds at which these 

conflicts happen mitigate this effect. Slower speeds 

make it easier to avoid collisions and reduce the like-

lihood of harm to the involved persons in the event 

of an incident. In uncongested traffic conditions with 

fewer vehicles on the road, lower emissions are pro-

duced, and theoretically, the total number of con-

flicts could decrease. With fewer vehicles, interac-

tions between them are expected to occur less fre-

quently. However, when they do occur, the higher 

speeds at which these encounters happen increase 

the potential for injury in the event of a car accident. 

To achieve the results, microscopic traffic modelling 

was conducted using the PTV Vissim software. This 

software enables accurate calculations of vehicle tra-

jectories, allowing for the extraction of values such as 

acceleration, speed, and location at very short time in-

tervals (0.1 seconds for the models used in this arti-

cle). This approach enables a comprehensive analysis 

of conflicts and a fairly accurate estimation of emis-

sions. However, because it requires calculations for 

every object in the network at each time step, perform-

ing these computations using standard methods(not 

specifically designed for this purpose) would be 

highly challenging. Furthermore, the computational 

requirements are notably high, particularly when the 

simulation involves substantial traffic volumes trav-

ersing an extensive road network. Consequently, this 

necessitates limiting the scope of the microscopic 

analysis to a selected part of the network. While vari-

ous software options are available for microscopic 

traffic modelling, it is important to consider the car-

following model used, as these can vary across differ-

ent software platforms. For this study, the authors uti-

lised the Wiedemann 74 and Wiedemann 99 car-fol-

lowing models, which are implemented by default in 

PTV Vissim. Conducting conflict analysis directly 

within Vissim is not feasible. Instead, it is necessary 

to extract and process vehicle trajectory data using ex-

ternal methods. 

Given the computation mentioned above require-

ments related to the scope of the simulation, when us-

ing microscopic traffic modelling, it is important to 

note that it can only capture a specific network sec-

tion. It is important to study and critically evaluate 

various factors thoroughly. For example, the choice to 

prohibit RTOR leads to lower total energy values but 

higher average emissions and delays. This occurs be-

cause the lower energy values result from unfavoura-

ble traffic conditions, where vehicles cannot navigate 

through the designated section of the network. When 

vehicles are stuck and unable to move, they can't over-

come the resistances used to calculate energy values. 

Additionally, spending more time in the network 

causes increased delays and heightened emissions 

from idling, as the engine continues to run. 

The findings underscore the importance of consider-

ing specific factors that influence the effectiveness of 

traffic management. This paper discusses the impact 

of factors related to traffic control effectiveness, traf-

fic safety, and environmental considerations.  

 

6. Conclusions 

This paper investigates the impact of two selected 

car-following models on the results of microscopic 

traffic simulations. The authors have proposed tech-

niques to estimate various metrics to evaluate the ef-

ficiency of traffic management and control strate-

gies. The study focused on two car-following mod-

els: Wiedemann 74 (W74) and Wiedemann 99 

(W99). Throughout the validation process, it was de-

termined that both car-following models effectively 

simulate conditions observed at the test site. How-

ever, there were differences in the results related to 

traffic safety, emissions, and delays. With the W74 

model, depending on the scenario, the number of 

traffic conflicts varied by up to 56%, either increas-

ing or decreasing. On the other hand, with the W99 

model, the total conflict count consistently increased 



68 

 

Biszko, K., Oskarbski, J., Żarski, K., 

Archives of Transport, 72(4), 43-73, 2024 

 

 

by up to 78%. It is important to note that the different 

scenarios showed the highest percentage increases 

for these two car-following models. This highlights 

the need to explore additional methods for model 

calibration and validation. 

The methodology outlined in the article is designed to 

help make decisions about mobility planning, control 

strategies, and traffic arrangement. This is achieved 

by taking into account estimates related to emissions 

and traffic safety. More research is needed to improve 

the effectiveness of the factors that should be consid-

ered in these decisions. 

Validation of modelled travel times based solely on 

deviation from the average value seems inadequate 

due to significant discrepancies in the actual travel 

times of PT vehicles. In addition, an important ele-

ment is to verify the measurement data before it is 

used for modelling at the microscopic level. 

In light of the precise nature of microscopic modelling 

that accurately replicates behaviours, it is imperative 

to undertake further comprehensive studies to investi-

gate the variables utilised in calibration. The optimal 

result of these efforts would be the establishment of 

protocols delineating the methodology and standard 

values that can be applied in cases where identifying 

specific behaviours is unfeasible. Comprehensive 

guidelines are needed to develop microsimulation 

models, which could include new model validation 

techniques. This need arises from the observation 

that both car-following models were considered fea-

sible during the validation stage, yet the results re-

vealed notable disparities. 

The authors of this paper intend to further their re-

search by addressing a series of key issues. Their 

plan includes exploring new methods of collecting 

data on driver behaviour, focussing on factors such 

as speed, acceleration, and vehicle distances. They 

also aim to establish guidelines for validating their 

models and to develop criteria to support decision-

making processes. These criteria would address traf-

fic conditions, emissions and safety, especially re-

garding traffic conflicts. The ultimate goal is to cre-

ate a multi-criteria decision analysis framework that 

can be applied by anyone seeking to utilise micro-

scopic traffic modelling for their specific needs. 

The examples of calculations outlined in this paper 

pertain to various aspects of traffic flow, safety, envi-

ronmental and climate impacts, and energy efficiency. 

These serve as a foundation for devising a multi-cri-

teria approach for evaluating the effects of imple-

menting enhancements to the road network and traffic 

management. This approach should involve an assess-

ment of costs associated with the factors mentioned in 

the paper and considering infrastructure maintenance 

concerns. The calculation methods introduced can aid 

in the planning and oversight of traffic management 

interventions. 

 

Abbreviations: 

PT – Public Transport, CFM – Car-following model, 

W74/99 – Wiedemann 74/99, SSM – surrogate 

safety measures, SSAM – surrogate safety assess-

ment method. 
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