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Abstract: 

Analysis of works in the field of artificial intelligence allows to make an assumption that today there is a sufficiently 
developed theoretical basis for the development of intelligent control systems for locomotive control. This will mini-

mize the risks associated with the human factor on the railways. The paper presents the theoretical rationale for the 

development of a knowledge base for intelligent locomotive control systems. The approach and structure of the self-
learning system of intelligent DSS is proposed, the advantage of which is the presence of a fuzzy classifier that works 

according to the set criteria and determines a fuzzy image of the current train situation. Learning a fuzzy classifier 

consists in finding a vector K that minimizes the distance between the results of logical inference and experimental 
data from the sample. The knowledge base is implemented using linguistic variables formalized by methods of fuzzy 

logic. The use of linguistic values makes it possible to design the base using the usual language of communication, 

which greatly simplifies both the design process itself and the analysis of the system's performance. Also, the 
knowledge base has the possibility of constant self-improvement. This happens in two ways. The first is by adding new 

rules to the knowledge base in case the current situation does not match the existing ones in the base, in which case 

an additional rule is created and checked for adequacy. The second way is a mechanism for ranking rules in the 
knowledge base. If the control action of the locomotive driver coincided with the recommendation of DSS in the current 

situation, then the rating of this recommendation (rule) increases, and in the future the rule selection algorithm will 

choose one or another control action for the current situation that has the highest rating (that is, it has already been 
verified several times person). The experiment has shown that the use of intelligent DSS has positive results. On aver-

age, the DSS made the correct train control decisions faster than the locomotive driver. 
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1. Introduction 

At the current stage of development of rolling stock 

control systems, it is possible to use new approaches 

and algorithms of the theory of artificial intelligence, 

which allow the most effective use of all the latest 

achievements in the areas of hardware and mathe-

matical support. Automatic control of rolling stock 

can increase the safety and reliability of locomotive 

operation, reduce the amount of energy consump-

tion, and reduce the intensity of the driver's work-

load (Shvets, 2023; Albrecht  et al., 2016(p.1); Al-

brecht  et al., 2016(p.2); Gorobchenko, 2021). The 

structure and main elements of an automated train 

control system based on elements of the theory of 

artificial intelligence are proposed in (Gorobchenko 

& Nevedrov, 2020). The work (Janota et al., 2022) 

is dedicated to the analysis of human errors in the 

railway transport sector and the comparison of three 

technologically different railway traffic control sys-

tems, which have varying degrees of automation—

from manual, semi-automatic to almost fully auto-

mated (computer-based). Study (Holub et al., 2023) 

examines decision-making problems and analyzes 

methods for modeling power supply processes for 

traction rolling stock. Special attention is given to 

the synthesis methods of intelligent mathematical 

models, developed based on the theory of differen-

tial transformations. These methods allow for deter-

mining the complete informativeness of the recorded 

primary data and contribute to improving energy ef-

ficiency through the use of models with increased 

intellectual complexity and dimensionality. Addi-

tionally, one of the human reliability assessment 

(HRA) methods is applied to the three levels of au-

tomation.  An automatic method of controlling a 

computer data processing system (Wang et al., 

2022) based on artificial intelligence is also known. 

The system has the structure and functions of the 

train autopilot system, which optimizes the train 

movement in the curve, introduces the basic princi-

ples of fuzzy generalized predictive control. Works 

(Yin et al., 2016; Zhu et al., 2023) propose an ap-

proach of intelligent operation of trains based on a 

combination of expert knowledge and data mining 

algorithms. One of the proposed ones is a regression 

algorithm called CART (Classification And Regres-

sion Tree), other algorithms are based on the deep 

deterministic gradient (STOD) and on the basis of 

the normalized preference function (STON). The 

proposed algorithms can implement continuous lo-

comotive control and optimize several critical objec-

tives without using an offline speed profile. An ap-

proach for the intelligent operation of trains is also 

proposed, based on the combination of expert 

knowledge and data mining algorithms. The study 

examines the operation of an Urban Rail Transit 

System (URTS) with machine learning (ML) sup-

port, including obstacle perception, infrastructure 

perception, passenger flow prediction, train delay 

prediction, fault prediction, remaining service life 

prediction, optimization of train operation and con-

trol, optimization of train dispatching, and optimiza-

tion of ground communications for trains. A discus-

sion on future challenges and development direc-

tions of ML-based URTS is also presented. In the 

article (Zhou et al., 2022), the general control algo-

rithms of the automatic train control system are con-

sidered, namely: control using artificial neural net-

work algorithms and fuzzy control using a fuzzy 

controller, which is an important part of the whole 

system, which consists of fuzzification, defuzzifica-

tion, knowledge base, and fuzzy inference. This 

open-loop controller is responsible for eliminating 

the disturbance-induced deviation during train oper-

ation using a proportional controller, an integral con-

troller, and a differential controller. An important 

task for the implementation of intelligent train con-

trol systems is the data presentation. One of the ap-

proaches to such a representation in the form of 

fuzzy parameters is given in. 

In (Shen & Yan, 2017), a two-layer control structure 

of the automatic train control system is considered: 

the upper level control consists in optimizing the tar-

get speed curve, and the lower level control consists 

in tracking the optimal target speed curve by urban 

rail transport. For upper-level control, a multi-objec-

tive model of train operation is first created with en-

ergy consumption indicators, movement time accu-

racy as optimization indexes, and the entropy weight 

method is applied to solve the weight factor of each 

index. A genetic algorithm is also used to optimize 

the model and obtain the optimal target speed curve. 

The study (Butko et al., 2015) uses the technology 

of fuzzy forecasting to ensure effective operating 

conditions of rolling stock, which opens up great po-

tential for controlling complex systems. In work 

(Liu et al., 2019), the current train situation is pre-

sented as a fuzzy situation. The received input fuzzy 

situation is compared with all typical situations in 
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the memory of the intelligent system. This approach 

makes it possible to implement the fastest and sim-

plest algorithm for determining the state of a train 

during movement for an intelligent control system. 

In the article (Cao et al., 2018), a system for control-

ling the boxing of locomotive wheels is proposed 

based on fuzzy logical inference, which prevents 

wheel boxing and simultaneously monitors the pro-

file of the section and the speed on it. By means of 

FOC (field-oriented control) in which the hysteresis 

unit generates a switching signal for the inverter to 

produce the appropriate voltage and control the an-

gular velocity of the traction electric motor. In the 

work (Zhang et al., 2021), the control principle of 

the auxiliary power supply system of the Maglev 

train in Qingyuan is studied, and a simulation model 

is constructed in MATLAB/SIMULINK. A fuzzy 

PID controller is proposed to improve the control 

method, using a genetic algorithm to optimize the 

membership functions and fuzzy rules. A model of 

the fuzzy PID controller is created to compare the 

output performance of the device under different 

control methods. Since the conventional PID con-

troller parameters cannot be adaptively adjusted, a 

fuzzy PID controller method based on fuzzy control 

theory is proposed. Considering the complexity of 

determining the membership function parameters 

and the discrepancy between the fuzzy control rules 

and the charging device, a genetic algorithm pro-

gram is developed to optimize the membership func-

tions and control rules. In the study (Dias et al., 

2024), an innovative use of a multilayer perceptron 

combined with a membership function for binary 

classification of HOT BOX and HOT Wheel issues 

is proposed, improving fault prediction and prevent-

ing accidents. The multilayer perceptron with a 

membership function is noted for its ability to learn 

from nonlinear and complex patterns in this dataset. 

Its ability to update patterns with new data helps 

avoid frequent overfitting, providing a more effi-

cient and adaptive solution. The work (Liu et al., 

2023) examines a train tracking algorithm based on 

the Siamese network, which is accurate, efficient, 

and has significant development potential. Its output 

is a detection map showing the probability that any 

position in the search area is the center of the target 

bounding box, with the maximum value of the de-

tection map being the center of the target bounding 

box predicted by the algorithm. Fuzzy logic infer-

ence is also introduced into the tracking process to 

analyze the reliability of the detection map. In the 

study (Tang et al., 2022), a systematic literature re-

view on the current state of artificial intelligence in 

railway transport is presented, covering mainte-

nance, automatic rolling stock control, and traffic 

safety. The use of intelligent systems provides addi-

tional support in improving maintenance operations, 

leading to increased safety, can support optimization 

models to solve maintenance planning problems, 

and can utilize a wide range of data from sensors, 

visual images, and materials. In (Moaveni et al., 

2022), an effective method of analysis based on 

fuzzy data and fuzzy thinking is proposed for large 

volumes of data of China's high-speed train control 

system. In the article (Yang et al., 2017), the K-

means clustering method is used to identify repeated 

occurrences of delays on the highly loaded railway 

lines of Copenhagen. Clusters define behavioral data 

that is generated automatically and continuously by 

the railway signaling system. The results of the 

method show when it is necessary to correct actions, 

indicating cases where trains were repeatedly de-

layed. This method can identify and distinguish dif-

ferent conditions that affect the movement of a train 

on the same section. 

In the article (Zhang, 2017) it is proposed to use a 

recurrent neural network with LSTM (long-short-

term memory) to detect and identify malfunctions in 

railway transport, testing of this system showed that 

the network correctly classifies and detects malfunc-

tions with an accuracy of 99.7%. 

The analysis of works in the field of artificial intel-

ligence allows to make an assumption that today 

there is a sufficiently developed theoretical basis for 

the development of intelligent decision support sys-

tems (DSS) for locomotive control. This will mini-

mize the risks associated with the human factor on 

the railways. In 2020-2023, a number of accidents 

and disasters with human casualties occurred on the 

world's railways (Office of Rail and Road, 2021; 

Commission for Railway Regulation, 2021; Euro-

pean Union Agency for Railways, 2022; Finnish 

Transport and Communications Agency, 2022; Eu-

ropean Union Agency for Railways, 2023), despite 

the fact that the traction rolling stock involved in 

these accidents was equipped with modern powerful 

automation systems. Automated control systems 

have approached the limit of their development and 

can no longer guarantee the occurrence of traffic in-
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cidents, the main source of which is a person (Vo-

lodarets et al., 2019; Akishev et al., 2023). The way 

out of this situation can be the integration of artifi-

cial intelligence systems into the automatic control 

of rolling stock, which allow taking into account a 

wider range of factors during movement and predict-

ing the occurrence and development of abnormal sit-

uations in order to prevent them at the initial stage. 

Thus, based on the results of the analysis formulated 

above, the main hypothesis of the presented study is 

formulated as follows: the intelligent locomotive de-

cision support system (DSS) should use a 

knowledge base created based on the actions of the 

locomotive driver in all train situations. The crite-

rion for the quality of training the knowledge base is 

the number of matches between the control deci-

sions made by the system and those made by the lo-

comotive driver under identical train operation con-

ditions. In the future, when transitioning from DSS 

to an autonomous intelligent control system, the 

quality criteria should be indicators related to traffic 

safety, energy consumption, schedule accuracy, and 

so on. At the same time, appropriate adjustments 

will be made in the self-learning system of the intel-

ligent locomotive control system. 

The quality of work of artificial intelligence systems 

is directly related to the quality of the structure, con-

tent, and control algorithms of the knowledge base. 

The main functions of knowledge bases include col-

lecting information, creating and storing rules, and 

self-learning. The purpose of this work is to develop 

a theoretical basis for the creation of knowledge ba-

ses of intelligent locomotive control systems. For 

this it is necessary to: 

− develop a structure of self-study; 

− describe the process and develop classification 

criteria for the current train situation; 

− determine the list of information signals for 

control and description of the current train situ-

ation; 

− develop the principles of self-learning of the in-

tellectual system; 

− conduct an experimental study and evaluate the 

effectiveness of the proposed intellectual DSS. 

 

2. Materials and methods 

In this work, self-learning will be understood as a 

complex of methods and algorithms for setting up 

and functioning of intelligent rolling stock (RS) con-

trol systems. The structure of the system shown in 

Figure 1 (Gorobchenko, 2021; Gorobchenko et al., 

2019) is proposed for use. 

 

 
Fig. 1. Structure of the self-learning system 

 

The self-learning process is as follows. Information 

about the state and changes of the environment, 

about the current mode of operation of the locomo-

tive, about the position of the control bodies using 

the interface part is divided into several streams. The 

knowledge base is designed to accumulate infor-

mation about traffic control. The task of the fuzzy 

classifier is to generate a control signal for intelli-

gent DSS. The system, analyzing data on the state of 

the parameters affecting the train movement, gener-

ates control signals that are most appropriate in the 

current situation (i.e., recommendations for RS con-

trol) These signals through the interface part are sub-

mitted to the knowledge base for further verification 

of their adequacy and effectiveness. 

Fuzzy classifier and approaches to its construction. 

The fuzzy classifier (FC) is the main element of the 

self-learning system shown in Figure 1. The effi-

ciency of system learning and the rest of the safety 

of the train depend on its operation (Gorobchenko, 

2021; Gorobchenko et al., 2019). 

FC is a fuzzy knowledge base (Fig. 2.), which re-

ceives signals about the current state of the traction 

rolling stock and the environment. An external 

knowledge base is used for training (creating and 

clarifying the rules of a fuzzy knowledge base), 

which displays a spectrum of control signals de-

pending on the current train situation. It is created as 
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a result of real journeys and shows how drivers con-

trolled rolling stock. At the output of the classifier, 

there are control signals generated in accordance 

with the rules of the fuzzy knowledge base. 

 

 
Fig. 2. The structure of the fuzzy classifier 

 

The initial set of features is defined in an informal 

manner, based on the specialist's experience and per-

sonal preferences. Formal methods are applied to the 

training sample A to verify this initial system for suf-

ficiency and necessity. Among all possible feature 

systems, a system is considered sufficient if, for 

given S and D, it ensures that the costs N do not ex-

ceed a certain threshold N0. The costs N here refer to 

the measurement costs of the features (Nx) and the 

costs of losses caused by recognition errors (Nr): 

 

𝑁 = 𝑁𝑥 + 𝑁𝑟 , (1) 

 

A sufficient system of minimal complexity (cost) is 

necessary. Thus, in practice, a combinatorial prob-

lem of this type is solved on the training sample A. 

 

𝛽 =
, ⬚𝛽∈𝐵

𝐶, 𝐷, 𝐴,𝑁0
, (2) 

where 𝐶 =< 𝑐1, 𝑐2, … , 𝑐𝑘 >  – list of considered 

train situations; 

D – type of decision function; 

B – set of all possible feature systems; 

X –  informative set of descriptive features; 

N – expenses; 

N0 – threshold value of expenses. 

The costs of measurements depend on the number 

and types of features to be measured, as well as the 

number of digits required to represent the measure-

ment results. For obvious reasons, significant atten-

tion is focused on reducing the number of measured 

features, i.e., finding an informative subsystem of n 

features (Xn) among g features in the original system 

(Xg). 

The decisive criterion for feature informativeness in 

pattern recognition tasks is proposed to be the loss 

magnitude R. Even if the distributions of the popu-

lation are known, computing losses is associated 

with significant machine time costs. Therefore, at-

tempts are made to find criteria that are simpler to 

compute yet strongly correlate with the loss estima-

tion R. If the distribution of realizations of each pat-

tern conforms to a normal distribution with diagonal 

covariance matrices (resulting in iso-density sur-

faces being spheres of equal radius), then the meas-

ure of difficulty of recognition D, inversely propor-

tional to expected losses, can be represented by the 

average Euclidean distance between the means of all 

pairs of patterns (Gorobchenko, 2021): 

 

𝐷 = (1/𝐶𝑘
2) ∑ 𝜌(𝑖𝑗)

𝑘

𝑖,𝑗=1

, (3) 

 

where 𝜌(𝑖𝑗)  – The Euclidean distance between the 

means of the i-th and j-th patterns 

Let’s denote by 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)– the vector of 

informative features of the classification object, and 

by 𝑡1, 𝑡2, … , 𝑡𝑐 – the decision classes. In our case, a 

fuzzy classifier is a mapping 𝑋 → 𝑦 ∈
{𝑡1, 𝑡2, … , 𝑡𝑐}implemented using a fuzzy knowledge 

base. The fuzzy knowledge base of this mapping is 

written as follows: 

 

𝐼𝑓(𝑥1 = 𝛩1𝑗  and 𝑥2 = 𝛩2𝑗  and 𝑥𝑛
= 𝛩𝑛𝑗 with weight w𝑗), 

then 𝑦 = 𝑑𝑗 , 𝑗 = 1,𝑚, 

(4) 
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where m – the number of rules; 

𝑑𝑗 ∈ {𝑡1, 𝑡2, … , 𝑡𝑐} – the value of the consequent of 

the j-th rule; 

𝑤𝑗 ∈ [0.1]–the weighting factor that determines the 

reliability of the j-th rule, 𝑗 = 1,𝑚; 

𝛩𝑖𝑗 – a fuzzy term that evaluates feature xi in the j-

th rule 𝑖 = 1, 𝑛 𝑗 = 1,𝑚.. 

The degree of fulfillment of the j-th rule for the input 

vector𝑋 ∗= (𝑥1 ∗, 𝑥2 ∗, … , 𝑥𝑛 ∗) is calculated as fol-

lows: 

 

𝜇𝑗(𝑋 ∗) = 𝑤𝑗 (𝜇𝑗(𝑥1 ∗)
𝜇𝑗(𝑥2∗)

…
𝜇𝑗(𝑥𝑛∗)

), 

𝑗 = 1,𝑚,  
(5) 

 

where𝜇𝑗(𝑥𝑖 ∗)– the degree of membership of the 

value xi* to the fuzzy term 𝛩1𝑗; 

^ – the t-norm, which is implemented by the mini-

mum operation. 

The degree of membership of the input vector X* to 

the classes 𝑡1, 𝑡2, … , 𝑡𝑐 is calculated by the following 

expression: 

 

𝜇𝑡𝑠(𝑋 ∗) = 𝑎𝑔𝑔
∀𝑗:𝑑𝑗=𝑡𝑠

(𝜇𝑗(𝑋 ∗)), 𝑠 = 1, 𝐶, (6) 

 

where 𝑎𝑔𝑔 – the aggregation of the results of fuzzy 

inference for each rule of the knowledge base, which 

is implemented by the operation of the maximum 

over the degrees of membership. 

The result of the logical conclusion will be repre-

sented by the following fuzzy set: 

 

𝑦 ∗̃=
𝜇𝑡1(𝑋 ∗)

𝑡1
,
𝜇𝑡2(𝑋 ∗)

𝑡2
, … ,

𝜇𝑡𝐶(𝑋 ∗)

𝑡𝐶
, (7) 

 

As a result of the classification, let’s designate the 

solution with the maximum degree of membership 

in the fuzzy set of equation (8): 

 

𝑦 ∗= arg max (𝜇𝑡1(𝑋 ∗), 𝜇𝑡2(𝑋 ∗),… , 𝜇𝑡𝐶(𝑋
∗)), 

(8) 

 

According to Figure 1, the fuzzy classifier contacts 

the knowledge base, which contains and updates in-

formation about the real actions of drivers during 

train movement. Based on these data, a training sam-

ple of M input-output pairs is formed 

 

(𝑋𝑟 , 𝑌𝑟), 𝑟 = 1,𝑀, (9) 

where, 𝑌𝑟 ∈ (𝑡1, 𝑡2, … , 𝑡𝐶). 
Let's introduce the following notations: 

Р – vector of the parameters of the membership 

functions of fuzzy terms of the knowledge base (6); 

W – vector of weight coefficients of knowledge base 

rules (4); 

𝐹(𝐾,𝑋𝑟) ∈ (𝑡1, 𝑡2, … , 𝑡𝐶) – the result of classifica-

tion based on a fuzzy base with parameters 𝐾 =
(𝑃,𝑊) at the input value Xr from the r-th line of the 

sample (9). 

Learning a fuzzy classifier consists in finding the 

vector K that minimizes the distance between the re-

sults of logical inference and experimental data from 

the sample (9). Let's consider 3 ways of calculating 

this distance, which are called learning criteria. 

Criterion 1. The distance between the desired and 

actual behavior of the model can be determined due 

to the accuracy of the classification on the training 

sample. Then training the fuzzy classifier: 

 
100%

𝑀
𝛴𝑟=1,𝑀𝛥𝑟(𝐾) → 𝑚𝑖𝑛, (10) 

 

where, 𝛥𝑟(𝐾) = {
1, if 𝑦𝑟 ≠ 𝐹(𝐾, 𝑋𝑟)
0,if 𝑦𝑟 = 𝐹(𝐾, 𝑋𝑟)

– object clas-

sification error Xr. 

The advantages of criterion 1 lie in its simplicity and 

clear meaningful interpretation. The error rate is of-

ten used as a criterion for training various pattern 

recognition systems. The objective function (10) 

takes discrete values, which makes it difficult to use 

fast gradient optimization methods, especially for 

small training samples. 

Criterion 2. The quality of learning can be related to 

the distance between the result of logical inference 

in the form of a fuzzy set (7) and the value of the 

output variable in the training sample. For this, the 

value of the initial variable in the training sample (9) 

is transformed into the following fuzzy set: 

 

{
 
 
 

 
 
 �̃� = (

1

𝑡1
,
0

𝑡2
, … ,

0

𝑡𝐶
) if 𝑦 = 𝑡1

�̃� = (
0

𝑡1
,
1

𝑡2
, … ,

0

𝑡𝐶
) if 𝑦 = 𝑡2

… … … … … … … …

�̃� = (
0

𝑡1
,
0

𝑡2
, … ,

1

𝑡𝐶
) if 𝑦 = 𝑡𝐶

 (11) 
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Accordingly, the learning of a fuzzy classifier con-

sists in finding such a vector K that: 

√
1

𝑀
𝛴𝑟=1,𝑀𝐷𝑟(𝐾) → 𝑚𝑖𝑛, (12) 

 

where 𝐷𝑟(𝐾) = 𝛴𝑟=1,𝐶((𝜇𝑡𝑗(𝑦𝑟) − 𝜇𝑡𝑗(𝐾, 𝑋𝑟))
2  – 

distance between the actual and desired output fuzzy 

sets when classifying the r-th object from the train-

ing sample (12); 

𝜇𝑡𝑗(𝑦𝑟) –  degree of membership of the r-th object 

from the training sample to the class tj according to 

(4); 

𝜇𝑡𝑗(𝐾, 𝑋𝑟)  – degree of membership of the output of 

the fuzzy model with parameters K of the class tj 

with the input vector Xr. 

The objective function in problem (12) does not con-

tain a plateau, so the optimization can be imple-

mented by gradient methods. However, in some 

cases, the fuzzy knowledge base optimal according 

to (12) does not ensure the minimal infallibility of 

the classification (10). This is explained by the fact 

that objects close to the class boundaries make al-

most the same contribution (D) to the learning crite-

rion (12) both during correct and incorrect classifi-

cation. 

Criterion 3. This learning criterion inherits the ad-

vantages of the previously discussed approaches. 

The idea is to increase the contribution to the learn-

ing criterion for falsely classified objects. As a re-

sult, the optimization problem takes the following 

form: 

 

√
1

𝑀
𝛴𝑟=1,𝑀(𝛥𝑟(𝐾) ⋅ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 + 1) ⋅ 𝐷𝑟(𝐾)

→ 𝑚𝑖𝑛, 

(13) 

 

where 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 > 0 – penalty coefficient. 

Problems (12) and (13) become equivalent at 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 → 0. At𝑝𝑒𝑛𝑎𝑙𝑡𝑦 → ∞ reliefs of the objec-

tive functions, problems (10) and (13) will be simi-

lar. When learning according to criterion 3, the 

choice of the direction of movement to the optimum 

is determined by erroneously classified objects. This 

behavior mimics the adaptive optimization method, 

in which falsely recognized objects are presented 

more frequently for retraining. 

Membership functions and rule weights can be con-

figured simultaneously and separately. When setting 

only the weighting factors (W), the volume of calcu-

lations can be significantly reduced, since the de-

grees of membership included in (2) 𝜇𝑗(𝑥1 ∗

), 𝜇𝑗(𝑥2 ∗), … , 𝜇𝑗(𝑥𝑛 ∗) do not depend on them. To 

do this, at the beginning of the optimization, let’s 

calculate the degree of fulfillment of the rules with 

single weighting coefficients (𝑤𝑗 , 𝑗 = 1,𝑚)  for 

each object of the training sample: 

 

𝑔𝑗(𝑋𝑟) = 𝜇𝑗(𝑥𝑟1)^𝜇𝑗(𝑥𝑟2)^…^𝜇𝑗(𝑥𝑚), 𝑗

= 1,𝑚, 𝑟 = 1,𝑀, 
(14) 

 

Next, for the new weighting coefficients, the degree 

of object membership to classes will be calculated 

according to the following formula: 

 

𝜇𝑡𝑠(𝑋𝑟) = 𝑎𝑔𝑔
∀𝑗:𝑑𝑗=𝑡𝑠

(𝑤𝑗 ⋅ 𝑔𝑗(𝑋𝑟)), 𝑠 = 1, 𝐶, (15) 

 

Let's consider the task of determining the control ac-

tion that needs to be implemented in a specific train 

situation. The database consists of values character-

izing the mode of train movement, the environment 

and the position of the controls at this moment in 

time. An example of such a format can be the data-

base shown in Table 1. 

Let’s design a fuzzy classifier with the following in-

puts: 

1 – speed; 

2 – main generator current; 

3 – brake line pressure; 

4 – skidding signal; 

5 – work of 2 sections; 

6 – mass of the train; 

7 – number of axes; 

8 – bowing of the current track element; 

9 – distance to the beginning of the next track ele-

ment; 

10 – bowing of the next track element; 

11 – traffic light signal; 

12 – distance to the signal; 

13 – ambient air temperature. 

Let’s determine that inputs 4, 5, and 11 should re-

main clear. For other inputs, fuzzification is re-

quired. There are several widely known methods for 

this. On the basis of table 1, a fuzzy knowledge base 

of the form of table 2 is formed. In the section "Re-

quired position of control bodies", the signals "KM 

handle position" and " Position of the crane handle 

item No. 254" should be implemented as fuzzy. 
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Table 1. An example of a database 

 

Values characterizing the mode of train movement Environment Regulation of control bodies 
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1 40 3180 5,5 0 2 3300 172 1 1150 4 green 850 4 10 2 2 0 

2 40 3180 5,5 0 2 3300 172 1 1010 4 green 710 4 10 2 2 0 

3 41 3200 5,5 0 2 3300 172 1 900 4 green 600 4 12 2 2 0 

4 41 3300 5,5 0 2 3300 172 1 800 4 green 500 4 13 2 2 0 

5 43 3300 5,5 0 2 3300 172 1 710 4 green 410 4 13 2 2 0 

6 44 3320 5,5 0 2 3300 172 1 590 4 green 290 4 13 2 2 0 

7 46 3500 5,5 0 2 3300 172 1 500 4 green 200 4 13 2 2 0 

8 48 3480 5,5 0 2 3300 172 1 400 4 yellow 100 4 13 2 2 0 

9 48 3500 5,5 0 2 3300 172 1 305 4 yellow 1150 4 13 2 2 0 

10 49 3490 5,5 0 2 3300 172 1 200 4 yellow 1010 4 13 2 2 0 

11 48 3490 5,5 0 2 3300 172 1 90 4 yellow 900 4 13 2 2 0 

12 49 3470 5,5 0 2 3300 172 4 700 5 yellow 800 4 13 2 2 0 

13 50 3450 5,5 0 2 3300 172 4 610 5 yellow 710 4 13 2 2 0 

14 49 3450 5,5 0 2 3300 172 4 500 5 yellow 590 4 13 2 2 0 

15 49 3430 5,5 0 2 3300 172 4 420 5 green 500 4 13 2 2 0 

16 49 3450 5,5 0 2 3300 172 4 300 5 green 400 4 13 2 2 0 

17 50 3450 5,5 0 2 3300 172 4 200 5 green 305 4 13 2 2 0 

18 48 3500 5,5 0 2 3300 172 4 95 5 green 200 4 13 2 2 0 

19 48 3490 5,5 0 2 3300 172 5 1300 -1 green 90 4 13 2 2 0 

20 47 3550 5,5 0 2 3300 172 5 1205 -1 green 1305 4 13 2 2 0 

21 47 3540 5,5 0 2 3300 172 5 1110 -1 green 1210 4 13 2 2 0 

22 46 3600 5,5 0 2 3300 172 5 1000 -1 green 1100 4 13 2 2 0 
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Fuzzy terms are given by the Gaussian membership 

function: 

 

𝜇(𝑥) = 𝑒𝑥𝑝( −
(𝑥 − 𝑏)2

2 ⋅ 𝑐2
) (16) 

 

where b – the coordinate of the maximum; 

c>0 – the concentration coefficient. 

The number of rules n in the knowledge base is de-

termined by the number of all possible combinations 

of input signal levels. For each variant, its own com-

bination of signals is formed at the input, which go 

to the control bodies (Kelarestaghi et al., 2018; Po-

drigalo et al., 2018). 

The self-learning process consists in periodically 

polling the input signal values and control position 

signals while the train is moving. The current value 

of the signals from the control bodies for this rule is 

compared with the values in the knowledge base 

(Zhang & Lu, 2020). Next, the section of the 

knowledge base "Required position of the controls" 

is adjusted taking into account the new experience 

gained during the movement (Mikhalevich et al., 

2019; Bugayko et al., 2023). 

 

Table 2. Database example 

The value of the signal level at the input 

Required posi-
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Development of a mathematical model of a dynamic 

knowledge base. The knowledge base plays the main 

role in implementing the process of intelligent con-

trol of rolling stock (Bugayko et al., 2023). Repre-

sentation of knowledge is the formalization and 

structuring of knowledge, with the help of which the 

main characteristics are displayed (Vermesan et al., 

2023; Nedashkovskaya, 2018): internal interpreta-

bility, structuredness, connectivity, semantic met-

rics, activity. 

For the formalization and representation of 

knowledge in the memory of information systems, 

there are a number of models that can be structured 

as follows: 

logical models; network models; frame models; 

mathematical models, production models. 

Logical models based on first-order predicate calcu-

lus involve describing a domain or problem as a set 

of axioms. The structuring of knowledge above was 

achieved using this model. Its advantages include 

the clarity and transparency of logical structures. 

However, when implemented on a computer, this 

approach proves to be challenging both from the per-

spective of software developers and users alike. 

Frame models are an abstract representation of cer-

tain perception stereotypes. They distinguish be-

tween frame templates, or prototypes, stored in a 

knowledge base, and frame instances, which are cre-

ated to reflect real factual situations based on incom-

ing data. 

A semantic network is a directed graph where nodes 

represent concepts and edges represent relationships 

between them. 

Production models can be considered the most wide-

spread. A production model is a rule-based model 

that allows to represent knowledge in the form of "If 

(condition), then (action)" statements. A production 

model was used to model the knowledge base of the 

locomotive DSS. 

In general, the production model can be presented in 

the following form: 

 

𝑁 =< 𝐴,𝑈, 𝐶, 𝐼, 𝑅 >, (17) 

 

where N – product name; 

A – scope of product application; 

U – condition of product use; 

C – product core; 

I – post-conditions of products, which are actualized 

in case of positive sales of products; 

R – comment, informal explanation (justification) of 

products, time of entry into the knowledge base, etc. 

To design a knowledge base for locomotive control, 

it is necessary to determine the parameters U, C, I. 

Parameter A will be the same for all products be-

longing to the base being designed, and parameter R 

does not directly participate in the operation of the 

system and is auxiliary. 

The core of the product can be presented in the fol-

lowing form: 

𝐶 = (𝑧𝑗1&𝑧𝑗2&…&𝑧𝑗𝑖 ⇒ 𝑑𝑗1&𝑑𝑗2&…&𝑑𝑗𝑖), (18) 

 

where, 𝑧𝑗1…𝑧𝑗𝑖– value of the conditions; 

𝑑𝑗1…𝑑𝑗𝑖– value of actions. 

For each serial number of the conditions, a set of val-

ues is defined during the design of the base, i.e 𝑧𝑗𝑖 ∈

𝑍𝑖. 
For example, there is a set of conditions Zk – "Cur-

rent slope of the track profile". In the process of de-

signing the database, it is determined that the values 

given in Table 3 should be entered into this set. In 

fact, the values of the elements of the set given in 

Table 3 are fuzzy linguistic variables. Therefore, 

their acquisition is completely determined by the 

methods of fuzzy logic. 

The use of linguistic values makes it possible to de-

sign the base using the usual language of communi-

cation, which greatly simplifies both the design pro-

cess itself and the analysis of the system's perfor-

mance. 

 

Table 3. The value of the "Current profile slope" set 
Designation of 

the set element 
Value of the set element 

z1k «small ascent» 

z2k «average ascent» 

z3k «big ascent» 

z4k «small descent» 

z5k «average descent» 

z6k «big descent» 

 

However, there are also such sets where the use of 

fuzzy variables is impossible. For example, to de-

scribe the set "Traffic light signal" in the database, 

the following values are used: "red", "yellow", 

"green"; the set "Number of working sections" (for 

locomotives) consists of two elements: "1" and "2". 

The given values are clear and the signals from the 

corresponding sensors are used in the base without 

transformations. 
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Similarly to the description of the conditions, for 

each serial number of the action, a set of values is 

defined during the design of the base, i.e. 𝑑𝑗𝑖 ∈ 𝐷𝑖. 

Both distinct and phased variables are used to de-

scribe actions 𝑑𝑗1…𝑑𝑗𝑖 . 

Parameter I of formula (14) is post-production sales. 

In our case, in order to determine the adequacy of 

the actions offered when a certain list of conditions 

is met, the "Number of observations" parameter was 

entered into the knowledge base, which is parameter 

I. This allows to assess, at the initial stage of filling 

the knowledge base, how often in response to the 

conditions(𝑧𝑗1&𝑧𝑗2&…&𝑧𝑗𝑖) those or other actions 

(𝑑𝑗1&𝑑𝑗2&…&𝑑𝑗𝑖). Then, when assessing the situa-

tion, the DSS will use this information and make de-

cisions that were most often encountered in the past, 

or invite additional data about the current situation 

to make a final decision. 

Element U in formula (17) is a condition for using 

products. In our case, the knowledge base has the 

ability to work in two modes – the accumulation of 

knowledge and the use of knowledge by intelligent 

DSS. The accumulation of knowledge is carried out 

by monitoring the current train situation 

(𝑧𝑗1&𝑧𝑗2&…&𝑧𝑗𝑖) and controlling actions of loco-

motive crews (𝑑𝑗1&𝑑𝑗2&…&𝑑𝑗𝑖) and entering this 

data into the database in the form of (18). 

The mode of using knowledge is as follows. The in-

telligent system receives data about the current train 

situation in the form (𝑧𝑗1&𝑧𝑗2&…&𝑧𝑗𝑖). Next, the 

obtained data are compared with the products ob-

tained earlier. There are products in which the con-

ditions coincide with the current ones. According to 

the defined rules, DSS chooses which products 

should be used at the current moment in time. 

In general, the work of the knowledge base is de-

scribed by the following algorithm. When the data-

base is in the "Accumulation" mode, products are re-

plenished and updated. If a product identical to the 

current conditions of train operation is found in the 

knowledge base, then its weight among other prod-

ucts is increased by increasing parameter I. If the 

current conditions of train operation and the control 

actions of the locomotive crew (positions of the lo-

comotive control bodies) do not coincide with any 

existing products, then new products are added to 

the database with current values (𝑧𝑗1&𝑧𝑗2&…&𝑧𝑗𝑖) 

and (𝑑𝑗1&𝑑𝑗2&…&𝑑𝑗𝑖). 

When the base is operating in the "Usage" mode, the 

DSS constantly monitors the current train situation 

and compares it with existing products. In the event 

of a match, the DSS provides control recommenda-

tions based on the experience of the knowledge base. 

If the current situation does not correspond to any 

existing products, then the DSS is unable to recom-

mend any control actions and the set of recom-

mended control actions is reset to zero. 

Formally, the knowledge base operation process is 

described by the following expressions:

 

𝑈 =  "Accumulation" {
at С𝑐𝑢𝑟 ∈ 0base;Сbase і ≡ Сact, Іі = Іі + 1
at С𝑐𝑢𝑟 ∉ 0base;Сbase k+1 ≡ Сact, І𝑘+1 = 1, 𝑘 = 𝑘 + 1

 

𝑈 =  "Usage" {
at С𝑐𝑢𝑟 ∈ 0base;Сbase і ≡ Сact, 𝐷act ≡ 𝐷base і
at С𝑐𝑢𝑟 ∉ 0base; 𝐷𝑐𝑢𝑟 ≡ ∅

, 
(19) 

where Сcur – current value of the train driving condi-

tions and the position of the locomotive controls; 

Obase – set of all products entered into the knowledge 

base; 

С base – separate products of the knowledge base; 

k – number of products in the knowledge base; 

𝑖 ∈ [1; 𝑘]  – serial number of products in the 

knowledge base; 

Іі – parameter that characterizes the number of ob-

servations of the i-th product during the filling of the 

knowledge base; 

𝐷cur  – current control actions of the locomotive 

crew, recommended by DSS (regulations of locomo-

tive control bodies); 

𝐷base і – a list of control actions included in the i-th 

products: 𝐷бази і = (𝑑𝑗1&𝑑𝑗2&…&𝑑𝑗𝑦)𝑖. 

 

3. Results and discussion 

 

The MATLAB software package, namely Fuzzy 

Logic Designer, was used to test the above theoreti-

cal propositions. Rules in the form of logical prod-

ucts "If a condition, then an action" were used to cre-
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ate a knowledge base. For our experiment, the posi-

tion of the main locomotive control bodies and the 

signal to feed sand under the wheels were chosen as 

actions. but it should be noted that the list of control 

actions when designing real intelligent control sys-

tems should be expanded in accordance with the list 

of job duties of the driver during train movement. 

When designing a fuzzy knowledge base, the struc-

ture shown in Figure 3 was obtained. The list of in-

put signals here corresponds to the data in Table 1. 

All input signals are normalized in the interval [0;1]. 

To represent them in the form of fuzzy values, a set 

of characteristic functions is assigned to each input 

signal. For an example, Figure 4 shows the fuzzifi-

cation of the "Train speed" value. It is represented 

by the following vague values: "very low", "low", 

"average", "high", "very high". 

According to the logic of the control of traction roll-

ing stock and on the basis of a survey of experienced 

drivers, a knowledge base was created in the Fuzzy 

Logic Designer package, a part of which is presented 

in Figure 5. 

One line from the knowledge base shown in Figure 5 

has the following form: 

IF (Speed=low & Generator_current=high & 

Brake_line_pressure=high & Skidding_sig-

nal=no_skidding & Work_of_2_sections=2_section 

& Mass_of_the_train=high & Num-

ber_of_axes=low & Bowing_of_the_cur-

rent_track_element=lift & Distance_to_the_begin-

ning_of_the_next_track_element=high & Bow-

ing_of_the_next_track_element=lift & Traf-

fic_light_signal=green & Distance_to_the_sig-

nal=high & Ambient_air_temperature=average)  

THEN Position_controller=high, Brake_lever_po-

sition=no_brake, Sand_supply=no_sand_supply 

Experimental studies were conducted at the training 

complex for locomotive drivers, which was installed 

at the State University of Infrastructure and Tech-

nologies. During the experimental trips, the simula-

tor program and the program of the decision support 

system based on the developed knowledge base 

were launched in parallel. Control actions of the lo-

comotive driver and system recommendations were 

monitored. Four working experienced train drivers 

took part in the experiment, the section on which the 

experiment was conducted from the "Kyiv-Passen-

ger" station to the "Fastiv" station.
 

 
Fig. 3. The structure of input and output data of the knowledge base 
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Fig. 4. "Train speed" fuzzy variable 

 

 
Fig. 5. General view of the rules in the knowledge base 

 

Additionally, from May to June 2024, experimental 

studies were conducted on operating locomotives 

running between the "Kyiv-Passenger" station to the 

"Hrebinka" station. Eight locomotive crews were in-

volved, completing 16 trips. During each trip, all 

control actions taken by the locomotive driver were 

tracked and systematized under all conditions, in-

cluding movement on intermediate station tracks, 

night-time travel, travel in adverse weather condi-

tions (3 trips), movement under prohibitive signal 

aspects, and more. The DSS program incorporated 

all train operation conditions on the section from 

"Kyiv-Passenger" to "Hrebinka," and automated 

train operation recommendations were obtained. Af-

ter collecting data from the actual trips and modeling 
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these trips using the DSS, a comparison was made, 

the results of which are presented below. 

When analyzing the decisions made by drivers on 

the simulator complex, up to 4% of the decisions 

made by the system and the human did not coincide. 

Figure 6 shows the distribution of the time devia-

tions in decision-making by the intelligent system 

compared to the human for those control decisions 

that did match. 

Analyzing the data from real trips and comparing 

them with the train operation system's recommenda-

tions, the deviation of the system's decisions from 

the driver's decisions amounted to 6%. 

 

 
Fig. 6. Distribution of deviations of the decision-making time of an intelligent system in comparison with a 

person (based on simulator trip data) 
 

 
Fig. 7. Distribution of deviations of the decision-making time of an intelligent system in comparison with a 

person (based on real locomotive trip data) 
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The analysis of experimental data presented in Fig-

ures 6 and 7 provides grounds to assert that the in-

telligent system generally generates control deci-

sions for locomotive operation faster than the driver 

does. The mathematical expectation of the sample 

shown in the figures is determined by the following 

formula: 

 

𝑀(𝛥𝑡) = ∑ 𝑝(𝛥𝑡𝑖) ⋅ 𝛥𝑡𝑖

5

𝑖=−6

 (20) 

 

where𝛥𝑡𝑖  – deviation of the decision-making time 

between the person and the system; 

𝑝(𝛥𝑡𝑖)– deviation probability. 

 

Calculations show that the mathematical expectation 

of the decision-making time deviation by the auto-

mated system compared to the human during the 

simulator study is 𝑀(𝛥𝑡) = −1.18 seconds . This 

parameter for real trip data in operation is 𝑀(𝛥𝑡) =
−0.96 seconds, which is less than the simulator trip 

data but generally confirms the overall effectiveness 

of using intelligent DSS for locomotive control. 

In the course of the research, a list of factors influ-

encing the decision-making process of train control 

was determined (listed in Table 1). But this list is not 

exhaustive. In the process of developing decision-

making support systems for specific types of traction 

rolling stock, this list must be expanded and speci-

fied depending on the capabilities of automated con-

trol systems installed on locomotives. The latest lo-

comotives have the ability to control, process and 

transmit information of dozens of parameters. Tak-

ing them into account (perhaps with the introduction 

of ranking according to the degree of influence on 

the train movement process) is a necessary condition 

for the high-quality operation of intelligent control 

systems. In addition, when making decisions, the 

driver is also guided by additional information about 

the train situation (the condition of the track ahead, 

radio dispatcher commands, existing speed limits 

when moving along separate sections, etc.). All of 

this operational information needs to be taken into 

account. For this, it is necessary to develop an inter-

face part that would allow to submit this information 

to the intelligent system in an automated mode. It is 

also necessary to make appropriate changes to the 

knowledge base to take into account this expanded 

list of informational signals. 

When conducting an experiment on a training com-

plex, it is possible to accurately reproduce the con-

ditions of driving a train several times. This is an ad-

vantage for evaluating and adjusting the model of in-

telligent DSS. But in order to transfer these results 

to operating locomotives, it is necessary to conduct 

additional studies in real operating conditions, as 

there is a possibility of the occurrence of additional, 

not taken into account factors and events during 

movement. 

The model of intelligent DSS demonstrates positive 

results in the presented form. Characteristic func-

tions of triangular and trapezoidal shapes are mainly 

used for fuzzification of values. In order to increase 

the accuracy of the model in the future, it is neces-

sary to conduct a study on the selection and justifi-

cation of each membership function for each type of 

signal at the input to the system. Also, in order to 

improve the work, it is necessary to justify the num-

ber of elements in the set of membership functions, 

that is, to expand the range of concepts from simple 

[small, average, big] to, for example, [very small, 

small, not big, average, above average, not small, 

big, extra big]. This will add flexibility to the 

knowledge base model, although it will increase the 

complexity of its structure. 

The paper presents the theoretical rationale for the 

development of a knowledge base for intelligent lo-

comotive control systems. The approach and struc-

ture of the self-learning system of intelligent DSS is 

proposed, the advantage of which is the presence of 

a fuzzy classifier that works according to the set cri-

teria and defines a fuzzy image of the current train 

situation. Also, the knowledge base has the possibil-

ity of constant self-improvement. This happens in 

two ways. The first is by adding new rules to the 

knowledge base in case the current situation does not 

match the existing ones in the base, in which case an 

additional rule is created and checked for adequacy. 

The second way is a mechanism for ranking rules in 

the knowledge base. If the control action of the lo-

comotive driver coincided with the DSS recommen-

dation in the current situation, then the rating of this 

recommendation (rule) increases, and in the future, 

the rule selection algorithm will choose one or an-

other control action for the current situation that has 

the highest rating (that is, it has already been verified 

several times person). 



184 

 

Gorobchenko, O., Holub, H., Zaika, D., 

Archives of Transport, 71(3), 169-186, 2024 

 

 

  

The presented model was tested on a driver's simu-

lator. The experiment has shown that the use of in-

telligent DSS has positive results. On average, the 

DSS made the correct train control decisions faster 

than the locomotive driver, the mathematical expec-

tation of the deviation of the decision-making time 

between the intelligent DSS and the locomotive 

driver is 𝑀(𝛥𝑡) = −1.18 seconds. This means that 

the proposed system makes decisions one second 

faster on average than a human operator. 

Improving the performance of this model is pro-

posed by improving the selection of functions of be-

longing to fuzzy values and by expanding the list of 

informative factors processed by the intelligent sys-

tem. 
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