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Abstract: 

The safety of ship navigation has always been a focus of attention in the field of maritime transport and navigation. In 
the complex marine environment, ships face a variety of obstacles, such as other ships, reefs, buoys, etc., which may 

pose a threat to navigation safety. Traditional obstacle avoidance methods mainly rely on the navigator's empirical 

judgement, but there are limitations and risks associated with this method. The standard ant colony optimisation al-
gorithm tends to fall into local optimal solutions during path search, while the A* algorithm is easily limited by the 

search space when dealing with large-scale problems. Therefore, the study proposes a method that combines a heu-

ristic search algorithm and an improved ACO algorithm to improve the efficiency of obstacle avoidance for vessel 
navigation safety. Firstly, the standard ant colony optimisation algorithm is improved and applied to the study of 

obstacle avoidance paths for vessel navigation, and then the A* algorithm is effectively combined with the improved 

ACO algorithm to improve the performance of planning obstacle avoidance paths. Through simulation experiments 
and practical applications, the study verifies the capability of the obstacle avoidance planning model. The experi-

mental results show that in simple environments, the hybrid algorithm reduces the path length by 3.8 and 5.5, and the 

number of iterations by 13.2 and 30.7 compared to Line-of-Sight and Particle Swarm Optimisation algorithms respec-
tively. In moderately complex environments, the proposed algorithm reduces the average path length by 6.51 and 3.93 

compared to Particle Swarm Optimisation and Line-of-Sight algorithms respectively. In complex environments, the 

proposed algorithm reduces the average path length by 15.7 and 12.4 compared to Particle Swarm Optimisation and 
Line-of-Sight algorithms, and reduces the number of iterations by 49 and 22.2, respectively. The study proposes a 

novel obstacle avoidance path planning method by effectively integrating the improved ant colony algorithm with the 

A* algorithm, which significantly improves the efficiency and accuracy of vessel navigation safety. The results show 
that the hybrid algorithm exhibits superior path planning capability in environments of varying complexity, and is able 

to quickly adapt to dynamically changing marine environments. This method not only provides a new solution for 

navigation safety, but also provides a theoretical basis and practical guidance for future autonomous navigation and 
decision-making of intelligent ships, which has important application value and promotion potential. 
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1. Introduction 

Ship navigation safety (SNS) has always been a fo-

cal point of concern in the field of maritime trans-

portation and navigation. In the complex marine en-

vironment, ships face a variety of obstacles, such as 

other vessels, reefs, buoys, etc., which may pose a 

threat to navigation safety. Therefore, effective 

avoidance of these obstacles is crucial to safeguard 

SNS (Liu et al, 2023). The traditional obstacle 

avoidance (OA) method mainly relies on the experi-

ence of navigators and real-time judgment of the 

navigational environment, but this method has cer-

tain limitations and risks. As artificial intelligence 

technology has advanced, clever algorithms have 

become increasingly prevalent in open access (Wei, 

2020 and Yu et al., 2021). A program called the Ant 

Colony Optimization (ACO) algorithm mimics how 

ants might search for food. Less accurate planning 

outcomes are produced by the standard ACO algo-

rithm's propensity to settle into local optimal solu-

tions during the path search process (Zhang et al., 

2021 and Chen et al., 2021). The A* algorithm 

(A*A) is a heuristic search method that can locate 

the ideal answer within a constrained search space. 

Its benefits include great efficiency and accuracy. 

However, when dealing with large-scale problems, 

the A*A is easily constrained by the search space 

(Grifoll et al., 2022 and Wang et al., 2021). The 

work integrates the enhanced ACO algorithm with 

the A*A to increase the efficacy of OA for SNS. The 

work combines the A* and ACO algorithms after 

first refining the ACO method and applying it to the 

avoidance of navigation obstacles (ANO) path re-

search. The goal of the project is to use the fusion 

algorithm to increase the quality and efficacy of OA 

for SNS. Additionally, it offers a path planning 

(P- P) strategy for SNS that is efficient and helps to 

raise the bar for marine transportation safety and ef-

fectiveness. 
The first part of the study utilizes the improved ACO 

algorithm (IACOA) for P-P for OA on ships. The 

second part introduces the A*A based on the 

IACOA P-P and effectively combines the two algo-

rithms as a way to improve the performance of the 

planning of OA paths. The third section uses real-

world applications and simulated studies to confirm 

the OA P-P capabilities of the OA planning model. 

The experimental results are compiled in the fourth 

section, which also examines the benefits and draw-

backs of the study's methodology. 

2. Literature review 

As maritime vessels become larger and routes be-

come more intensive, the challenges to navigational 

safety are becoming more complex. Thus, it is es-

sential to guarantee the maritime vessels' safety dur-

ing navigation. OA is a significant area of research 

for ship navigation (SN), a process that involves SN. 

As artificial intelligence technology has advanced, 

OA has made extensive use of intelligent algorithms. 

Numerous professionals and academics have studied 

intelligent algorithms in OA for SN extensively in 

an effort to offer safer and more effective OA path-

ways for SN. Academics like Öztürk (2021) sug-

gested a concrete visualization tool to improve the 

navigational safety of maritime traffic. The study 

utilized AIS data for feature extraction on the micro-

scopic of the navigation channel, followed by the 

study of spatial position change. The results of sim-

ulation experiments demonstrated that the visualiza-

tion tool was able to capture the characteristics of the 

data at the time of real accidents in a timely manner, 

which is a realistic guide for the safety of navigation 

of individual vessels and waters. However, research 

has only focused on capturing data features, and 

there is still insufficient research on how to further 

utilize these features for risk warning or optimizing 

navigation paths. Liu et al. (2022) constructed an 

evaluation model for a three-level hierarchical sys-

tem. The model utilized the evidence-based reason-

ing method for the confidence distribution of the fac-

tors at different evaluation index levels, and the 

fuzzy theory was used to analyze the qualitative and 

quantitative indexes. The model's risk ratings were 

found to be in line with actual circumstances, ac-

cording to the results, and they may be able to im-

prove risk early warning systems and offer helpful 

suggestions for managing marine navigation safety. 

Insufficient discussion on the applicability and ro-

bustness of the model in complex navigation envi-

ronments. To enhance the navigation safety ability 

and avoid collision, He et al. (2021) proposed a 

multi-ship encounter collision P-P method. Using a 

ship motion model and PID control, the study first 

created a real-time control system. Next, it created a 

scene recognition model, and by combining the two, 

it was able to determine the best collision prevention 

strategy. The outcomes showed that the P-P ap-

proach can considerably lower the likelihood of a 

vessel accident. This method still has certain short-

comings in terms of stability and response speed of 
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real-time control systems. Twin neural network-

based ship tracking was proposed by Liao H and 

other researchers to acquire the behavioral trajectory 

of the target ship (2020). The study used the corre-

lation filtering method to first build a ship tracking 

module. Then, it used the twinning technique and the 

peak response method to detect shadows of other ob-

jects early on. The outcomes showed that the tech-

nique can greatly increase ship tracking's efficacy 

and punctuality. The performance of this method in 

complex sea areas and adverse weather conditions, 

as well as the difficulty of training and optimizing 

twin neural networks, have not been studied corre-

spondingly. 

To address this problem and increase ships' real-time 

P-P capacity, Gao et al. (2023) suggested an im-

proved potential field ACO. In order to achieve real-

time dynamic avoidance, the study first built a non-

linear planning model. It then integrated the artificial 

potential field method with the ACO. The outcomes 

showed that the algorithm can successfully solve the 

planning of the ship's avoidance path and effectively 

increase the accuracy of course prediction and colli-

sion prevention. The study did not conduct a reliable 

analysis of performance in extreme situations such 

as complex sea conditions and multiple vessel inter-

sections. To enhance the deterministic and predic-

tive capabilities of SN trajectory data, Zhang et al. 

(2020) suggested a ship trajectory reconstruction 

model based on node weights and edge weights of 

ACO. The model firstly constructed the a priori 

knowledge base and solved the optimal path (Opt-P) 

from the route trajectory, and then proposed a large-

scale trajectory reconstruction method. The results 

demonstrated that the ship trajectory reconstruction 

model constructed by the study can significantly im-

prove the prediction ability of route trajectories. But 

the complexity of research methods is relatively 

high, requiring a longer calculation time to make 

predictions. To guarantee the safety of SN and ob-

tain the best possible navigation path, Chen G. and 

other academics (2021) presented a weather P-P ap-

proach based on the upgraded A-star algorithm. To 

find the best route, the approach first inflated the ob-

stacles and then used the A*A to seek the node tar-

gets. According to the findings, the technique can 

successfully lower the number of nodes that the al-

gorithm searches for. However, the A-star algorithm 

itself has limited adaptability to dynamic 

environments, so the algorithm can be further im-

proved for obstacle avoidance research. 

In domestic research, scholars pay more attention to 

the innovation and optimization of algorithms to 

adapt to complex and changing navigation environ-

ments, aiming to improve the autonomous decision-

making ability and real-time response speed of ships 

in obstacle avoidance processes. Through simula-

tion experiments and field tests, domestic research 

has verified the effectiveness of these algorithms in 

improving navigation safety and reducing collision 

risks. In contrast, foreign research focuses more on 

practical applications and system integration in the 

field of ship navigation safety obstacle avoidance. 

The research not only focuses on optimizing the per-

formance of algorithms, but also aims to deeply in-

tegrate algorithms with ship navigation systems, 

sensor equipment, etc., to achieve intelligent deci-

sion-making and automated control during ship nav-

igation. Foreign research also places greater empha-

sis on the fusion and processing of multi-source in-

formation to improve the accuracy and reliability of 

obstacle avoidance. Through comparison, it was 

found that domestic and foreign research is based on 

the actual needs of ship navigation safety, and obsta-

cle avoidance capabilities are improved through al-

gorithm optimization and technological innovation. 

Domestic research has shown outstanding perfor-

mance in algorithm innovation, providing new solu-

tions for ship navigation safety; However, foreign 

research focuses more on practical applications and 

system integration, providing strong support for the 

intelligent and automated development of ship nav-

igation safety. Based on the above analysis, experts 

and scholars have proposed different research meth-

ods to adapt to the safety needs of ship navigation in 

different scenarios, but there are still certain short-

comings in the research. Based on this, it is of great 

significance to study the use of improved ACO al-

gorithm and A * algorithm for obstacle avoidance in 

navigation. By effectively integrating the two algo-

rithms, the ability of path planning can be improved. 

The research aims to provide a new solution for ob-

stacle avoidance in ship navigation, promoting the 

safe and efficient operation of maritime traffic. 

 

3. Modeling of navigation obstacles by combin-

ing the IACOA with the A* algorithm 

The study suggests an ANO model architecture that 

combines the enhanced ACO algorithm with the 
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A*A to overcome the issues with conventional OA 

techniques. By leveraging the group intelligence op-

timization capability of the ACO algorithm and the 

quick path search capabilities of the A algorithm, the 

model seeks to offer a more secure and effective OA 

path for the SN. 

 

3.1. Avoidance of navigation obstacles path 

based on IACOA 

The environment and conditions of SN are growing 

increasingly complex due to the development and 

use of marine resources, and ANO has emerged as 

one of the most important factors in protecting SNS. 

Traditional ANO methods are often based on rules 

or mathematical models, which have certain limita-

tions and shortcomings. On the other hand, the ACO 

algorithm is a colony intelligence optimization algo-

rithm that can effectively handle complex and dy-

namic situations since it mimics the foraging behav-

ior of ant colonies in the wild. When performing OA 

and P-P for SNS, it is not constrained by the travel-

ing road due to the special characteristics of the ma-

rine environment. Meanwhile, the SN is also af-

fected by the harsh environment such as wind, 

waves, fog, etc., which may lead to positional shifts 

during SN (Ai and Zhu, 2020; Yaun and Shi, 2021). 

Therefore, choosing an appropriate map model is es-

sential for ANO research that uses the ACO algo-

rithm. Through analyzing and summarizing the re-

lated SN OA research, it is found that the raster 

method shows simplicity in processing data infor-

mation, and can transform environmental infor-

mation into a network storage with binary image in-

formation. This method can effectively transform 

the marine environment into a computer-under-

standable map model, highlighting its unique ad-

vantages. Therefore, the raster method is chosen for 

the study to be used for the map model construction 

of ANO paths. Figure 1 depicts the schematic for 

ship collision detection in the case of ship avoidance 

obstacle P-P, where the study aims to simplify the 

computing process. 

Following the establishment of ship collision detec-

tion, the distance between the ship's present position 

and its next position must be determined. At this 

point, the distance can be stated using Equation (1). 

 

𝑠 = √(−𝑦𝑗 + 𝑦𝑖)
2 + (−𝑥𝑗 + 𝑥𝑖)

2 (1) 
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x

y

x
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Fig.1. Schematic diagram of ship collision detection 

 

In Equation (1), 𝑥𝑖, 𝑦𝑖 denote the current position of 

the ship. 𝑥𝑗 , 𝑦𝑗  denote the next position of the ship. 

In the related ACO algorithm in ship OA P-P, the 

study found that the traditional ACO algorithm for 

OA path designers has the problems of easily falling 

into the local optimum and slow convergence. In or-

der to solve these problems, the study improved the 

ACO algorithm. The reason that the IACOA is able 

to avoid the premature local optimum solution is that 

the study increases the stabilization factor, which 

improves the transfer probability in the P-P process. 

The transfer probability at this point can be ex-

pressed by Equation (2). 

 

{
 
 

 
 𝑃𝑖𝑗

𝑘(𝑡) =
[𝜏𝑖𝑗(𝑡)]

𝛼
[𝜂𝑖𝑗(𝑡)]

𝛽
(𝑠𝑡𝑎𝑏𝑙𝑒𝑑𝑗)

𝛾

∑ [𝜏𝑖𝑗(𝑡)]
𝛼
[𝜂𝑖𝑗(𝑡)]

𝛽
(𝑠𝑡𝑎𝑏𝑙𝑒𝑑𝑗)

𝛾
𝑗∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

𝑠𝑡𝑎𝑏𝑙𝑒𝑑𝑗 =
𝑆𝑗 − 𝑂𝑗

𝑆𝑗

 (2) 

 

In Equation (2), 𝜏𝑖𝑗(𝑡) denotes the value of phero-

mone concentration (PC) between region 𝑖 and re-

gion G at the moment of 𝑡. 𝑗 denotes the heuristic 

factor at this moment and 𝜂𝑖𝑗(𝑡)  is the heuristic 

function (HF). 𝛽  is the desired atmosphere factor 

and 𝑠𝑡𝑎𝑏𝑙𝑒𝑑𝑗  denotes the stabilization factor. 

𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘 denotes the value of the passable region 𝑖 
of the 𝑘th ant, and 𝛾 denotes the value of the stabili-

zation factor coefficient. 𝑆𝑗  denotes the number of 

grids near the 𝑗 search node and 𝑂𝑗 denotes the num-

ber of obstacles present near the 𝑗 search node. The 

HF can be expressed in Equation (3). 

 

 



Wang, D., Jing, Y., 

Archives of Transport, 72(4), 43-88, 2024 

79 

 

 

𝜂𝑖𝑗(𝑡) =
1

√(𝑦𝑖 − 𝑦𝑗) + (𝑥𝑖 − 𝑥𝑗)2
 (3) 

 

Combined with the actual navigation of the ship can 

be found, the ship is sailing, its navigation is smooth 

and stable. Therefore, the study also needs to con-

sider the actual sailing situation when performing 

P- P, and the avoidance path cannot have too much 

curvature or even deadlock situation. Based on this, 

the study adds a cornering factor to the ACO algo-

rithm to increase the smoothness of the path, and the 

cornering factor can be expressed by Equation (4). 

 

𝜔𝑖𝑗(𝑡) = 𝜔0𝑅 (4) 

 

In Equation (4), 𝜔𝑖𝑗(𝑡) denotes the corner HF from 

the current node 𝑖 to the search node 𝑗. 𝜔0 denotes 

the corner parameter and 𝑅 denotes the corner sur-

rogate value. The inclusion of the cornering factor 

enables the algorithm to adjust the smoothness of the 

algorithm when searching for the next node, thus im-

proving the ship P-P performance. After the ACO 

algorithm completes a global OA P-P, the ant colony 

will update the PC in the new environment where it 

is located. The study introduces a reward and pun-

ishment strategy in order to ensure that a stable Opt-

P can be obtained at a later stage, and to improve the 

convergence speed and avoid the problem of local 

optimal solutions as a way of weakening the role of 

the positive feedback mechanism (Liang et al., 

2020). The introduction of this strategy can compen-

sate for the uneven distribution of pheromone in the 

neighboring better paths during the Opt-P search 

process, so as to ensure the smoothness of the path 

at the later stage. At this time, the global pheromone 

update rule can be expressed by Equation (5). 

 

𝜏𝑖𝑗(𝑛 + 𝑡) = Δ𝜏𝑖𝑗(𝑡) + Δ𝜏𝑖𝑗
∗ (𝑡) + 

                         (1 − 𝜌)𝜏𝑖𝑗(𝑡) 
(5) 

 

In Equation (5), 𝜌 denotes the volatilization coeffi-

cient of the PC of the ant colony during the search 

process. 𝛥𝜏𝑖𝑗(𝑡) denotes the total amount of phero-

mone released by the ants on the path during a com-

plete search cycle. 𝛥𝜏𝑖𝑗
∗ (𝑡) denotes the reward and 

punishment strategy for global pheromone updating. 

The reward and punishment strategy at this time can 

be expressed by Equation (6). 

 

Δ𝜏𝑖𝑗
∗ (𝑡) = {

𝜎 ∙ Δ𝜏𝑖𝑗(𝑡) Path length

1

𝜎
∙ Δ𝜏𝑖𝑗(𝑡) Short path

 (6) 

 

In Equation (6), 𝜎 denotes the value of the phero-

mone update parameter for the current Opt-P in 

global planning. The pheromone update of the ant 

colony is used to enhance the ACO algorithm for the 

analysis of OA in the SN path, effectively avoiding 

barriers and presenting the best way. Fig. 2 displays 

the flowchart of the best route based on the enhanced 

ACO algorithm. 

 

3.2. Obstacle avoidance path combining A* algo-

rithm and IACOA 

By improving the ACO algorithm for the optimiza-

tion of the Opt-P, the study conducted some experi-

ments and found that the improved ACO still suffers 

from blind search at the beginning of the search. 

This will lead to a decrease in search efficiency (SE), 

a tendency to fall into local optimums and unstable 

results. To solve these problems, some heuristic in-

formation or optimization strategies can be consid-

ered to be introduced to guide the ACO to search 

more efficiently (Zhang et al., 2021 and Islam et al., 

2023). By summarizing the heuristic search algo-

rithms (HSA), the study introduces the A*A into the 

study of ship OA paths. The A*A is an HSA that 

uses an estimation function to determine the valua-

tion of every potential passing point from the start 

point to the finish point. It then ranks those points in 

order to determine the Opt-P. Fig. 3 displays the 

flowchart of the A*A used to determine the Opt-P. 

Combined with Fig. 3, the analysis reveals that the 

A*A has strong SE in the OA path protocol of SN. 

It can effectively decrease the complexity of the 

problem and the needless path search by just needing 

to search the state of a few obstacles. The evaluation 

function (EF) in the A*A is its most central part, 

which can be expressed by Equation (7). 

 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (7) 

 

In Equation (7), 𝑓(𝑛) denotes the EF. 𝑔(𝑛) is the 

movement value from the path start point to the cur-

rent point 𝑛. ℎ(𝑛) denotes the movement value from 

the current point 𝑛 to the end of the path, which is 

also the HF in the A*A. From the speculation of 

Equation (7), it can be concluded that the value of 

the EF taken by the A*A in the path search process 
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has a direct relationship with the HF. The distance 

between the destination point and the path search's 

beginning point, in turn, affects the HF's value. The 

Manhattan distance is used as the HF in this study to 

make computation easier. Equation (8) can now be 

used to express the HF. 

 

ℎ(𝑛) = |𝑥𝑖 − 𝑥𝑗| + |𝑦𝑖 − 𝑦𝑗| (8) 

 

It is being researched whether increasing the number 

of search nodes can enhance the fusion algorithm's 

outward expansion search capabilities, hence im-

proving the performance of A*A in obstacle neigh-

borhood search. In the A*A, there are 8 nodes to be 

searched and 8 moving directions. On this basis, the 

study incorporates the extra 16 nodes in the outer 

layer into the to-be-searched nodes of the algorithm 

as well. This can both expand the search range and 

improve the SE and accuracy of the algorithm (Yin 

et al., 2021 and Yu et al., 2020). The path search 

schematic of the ACO+A*A after expanding the 

search nodes is shown in Fig. 4. 
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Fig. 2. Optimal path flowchart based on IACOA 
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Fig. 3. The flowchart of A * algorithm for finding the optimal path 
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Fig.4 Schematic diagram of path search for 

ACO+A* algorithm after expanding search 

nodes 

 

To specifically represent the relationship between 

the search nodes, search direction and the number of 

search outer extension layers, the study utilizes 

Equation (9) for representation. 

 

{𝑄𝑎 = 8 ×
𝑎(𝑎 + 1)

2
𝐷𝑎 = 8𝑎

 (9) 

 

In Equation (9), 𝑎  denotes the number of layers 

added to the outward extended search of the current 

node. 𝑄𝑎  denotes the value of change in the un-

searched nodes as the search layers increases. 𝐷𝑎 de-

notes the value taken with the search direction as the 

number of search layers increases. On the basis of 

increasing search nodes, the IACOA is effectively 

integrated with the A*A so that the hybrid algorithm 

(HA) can first use the A*A to obtain an initial opti-

mized path that avoids obstacles. Then the conver-

gence speed of P-P in the OA process is improved 

by setting the pheromone for the initial optimized 

path. At this point, the setting constants at the initial 

stage of the algorithm can be expressed by Equation 

(10). 

 

𝜏𝑖𝑗(0) = (𝑍 ×Ｍ𝑗) + 𝑘 (10) 

 

In Equation (10), 𝑍 denotes the ratio of the length 

between two nodes in the search area to the average 

value of the length of the search range in the area in 

which it is located. 𝑀𝑗 is the node paths that are con-

nected to the outside of the node is removed. 𝑘 de-

notes the value of the multiplier of pheromone ex-

pansion. 𝑍 can be calculated using Equation (11). 

 

 

𝑍 =
𝑑𝑖𝑗

𝑎𝑣𝑒𝑟𝑎𝑔𝑒∑ 𝑑𝑖𝑗𝑖,𝑗∈𝑛
 (11) 

 

In Equation (11), 𝑑𝑖𝑗  denotes the distance between 

the currently located node 𝑖 and the next node 𝑗, and 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒∑ 𝑑𝑖𝑗𝑖,𝑗∈𝑛  denotes the average value of the 

distance between the two points. After completing 

the pheromone update settings, the HF of the HA 

also needs to be reset. This helps to improve the SE, 

adapt to different problem scenarios, enhance the al-

gorithm's generalization ability, and extend its appli-

cation scope. The reset HF can be expressed by 

Equation (12). 

 

𝜂𝑖𝑗 =
1

𝑑𝑖𝑗 + ℎ𝑗𝑔
 (12) 

 

In Equation (12), ℎ𝑗𝑔 denotes the value of the 

movement cost function from the unsearched node 

𝑗 to the target point 𝑔 during the search process. By 

summarizing the above research, the OA path com-

bining the A*A with the IACOA is shown in Fig. 5. 

 

4. Performance analysis of ship obstacle avoid-

ance path planning by fusing improved 

AOC algorithm with A* algorithm 

To validate the performance of the HA constructed 

by the study using ACO and A*As in ship OA, the 

study uses particle swarm optimization (PSO) and 

line-of-sight (LOS) as comparison algorithms. The 

predicted depth magnitude and data magnitude dur-

ing the path prediction process, as well as the change 

in depth magnitude before and after using the HA 

are also used as validation metrics for the perfor-

mance. 
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Fig. 5. A flowchart of obstacle avoidance path combining A * algorithm and IACOA 
 

4.1. Performance analysis of HAs for path pre-

diction in ship obstacle avoidance 

Simulation experiments are carried out in a 20×20 

raster map by the research to validate the perfor-

mance of the fusion algorithm that fuses the en-

hanced AOC method with the A*A in ship overall 

area. The maximum number of iterations is set to 

200, and the number of ants is set at 100. The study 

uses MATLAB software to compare PSO, LOS and 

HA as a way to verify the performance of HA in ship 

OA P-P. Meanwhile, the maps in the simulation ex-

periments are set to three different types in 

MATLAB as simple, moderately complex, and com-

plex, and simulation comparisons are performed us-

ing PSO, LOS, and HAs in these three map environ-

ments, respectively. The results of the comparison 

of path prediction depth magnitude and data magni-

tude are shown in Fig. 6. 

Fig. 6(a) shows that the three algorithms have some 

differences in the prediction of P-P depth amplitude. 

The maximum and minimum values (Max-MinV) of 

the depth amplitude of the HA are 9.39 m and 5.37 

m. The Max-MinV of the depth amplitude of the 

LOS algorithm are 8.41 m and 5.38 m. The Max-

MinV of the depth amplitude of the PSO algorithm 

are 8.72 m and 5.91 m. In Fig. 6(b), the three algo-

rithms have significantly larger amplitude values 

than the LOS algorithm and PSO algorithm in the 

prediction of the path prediction. prediction is 

significantly larger than that of LOS algorithm and 

PSO algorithm. The Max-MinV of the data ampli-

tude of the HA are 9.23 m and 5.68 m. The Max-

MinV of the data amplitude of the LOS algorithm 

are 8.52 m and 5.89 m. The Max-MinV of the data 

amplitude of the PSO algorithm are 8.65 m and 6.31 

m. This indicates that the HA is significantly better 

at predicting and planning for the depth information 

of the navigation route, the size information of ob-

stacles, and the depth and size information of the ob-

stacles. More accurate and comprehensive obstacle 

information can be obtained. The study uses the er-

ror of depth magnitude and data magnitude before 

and after utilizing the HA as an indicator in order to 

further check the algorithm's inaccuracy in P-P. As 

shown in Fig. 7 is the result of the error comparison 

of depth magnitude and data magnitude before and 

after using the HA. 

In Fig. 7(a), before using the HA, the error range of 

the depth magnitude is at [-10.45-2.91]. After using 

the HA, the error range of depth magnitude is re-

duced to [-2.46-2.87]. In Fig. 7(b), before using the 

HA, the error range of the data magnitude is at [-

12.91-3.83]. After using the HA, the error range of 

data magnitude is reduced to [-4.52-2.46]. This 

shows that the smaller the error range of the magni-

tude, the stronger the P-P performance of the HA 

and the higher the accuracy. 
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for path prediction using three algorithms
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Fig. 6. Comparison results of path prediction depth amplitude and data amplitude 
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Fig. 7. Comparison of errors in depth amplitude and data amplitude before and after using a HA 

 

4.2. Effectiveness analysis of HAs in path plan-

ning simulation experiments for avoidance 

of navigation obstacles 

Through simulation experiments on the three algo-

rithms, the study confirms the efficacy and flexibil-

ity of the HAs application. MATLAB software is 

used for this purpose. The map environments used 

for simulation are set as three different types of sim-

ple, medium complexity and complexity in 

MATLAB, and the three algorithms are simulated 

and compared in these three map environments re-

spectively. Figure 8 depicts the map environments 

utilized for the simulation at several degrees of com-

plexity: Fig. 8(a) represents the simple environment, 

Fig. 8(b) represents the moderately complicated en-

vironment, and Fig. 8(c) represents the complex en-

vironment. 

The SN beginning and finishing points are shown in 

Fig. 8 by the red square and red triangle grids, re-

spectively. The starting and finishing coordinates of 

P-P on the map can be independently changed based 

on how obstacles are distributed throughout the map. 

As the HA requires more parameters to be set, the 

interrelationship between the parameters is more 

complicated. Therefore, several simulations are con-

ducted to determine a set of better parameters, as 

shown in Table 1. 
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After the parameter settings are finished, 20 inde-

pendent repetitions of simulation experiments are 

carried out in three different types of raster maps, 

respectively, to assure the accuracy and rigor of the 

results. The convergence curves and P-P comparison 

findings of the three methods in the basic environ-

ment are shown in Fig. 9. 
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Fig. 8. Simulation maps with different complexities 
 

Table 1 HA experimental parameter table 
Parameter Numerical value 

Ant number m 100 

Maximum number of iterations n 200 

Pheromone factor α 5 
Heuristic factor β 5 

Total pheromone Q 100 
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Fig. 9. Comparison results of path planning and convergence curves of three algorithms in a simple environ-

ment 
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From Fig. 9(a), the average path lengths of PSO al-

gorithm, LOS algorithm and HA are 28.6, 26.9 and 

23.1, respectively. The HA shortens the paths by 3.8, 

5.5 compared to LOS and PSO algorithms. From 

Fig. 9(b), the average number of iterations of PSO 

algorithm, LOS algorithm and HA are 80.3, 62.8 and 

49.6, respectively. This shows that, in comparison to 

the LOS and PSO algorithms, the average number of 

iterations of the PSO, LOS, and HA algorithms is 

13.2, 30.7, and the number of iterations of the HA 

algorithm is decreased by 13.2, 30.7. This suggests 

that in a basic navigation context, the HA can greatly 

enhance the performance of SN OA. Fig. 10 displays 

the convergence curves and P-P comparison find-

ings for the three algorithms in a moderately com-

plicated environment. 

In Fig. 10(a), the average path lengths of PSO, LOS 

and HAs in moderately complex environments are 

29.67, 27.09 and 23.16, respectively. The HA re-

duces the average path lengths by 6.51 and 3.93 

compared to PSO and LOS, respectively. The aver-

age PSO, LOS, and HA iterations is 129.5, 92.7, and 

75.1, respectively, as indicated in Fig. 10(b). In com-

parison to the PSO and LOS stages, the HA itera-

tions is lowered by 54.4 and 17.6, respectively. Fig. 

11 displays the convergence curves and compared P-

P outcomes of the three algorithms in a complicated 

setting. 

From Fig. 11(a), the average path lengths of PSO, 

LOS and HAs in complex environments are 41.6, 

38.3 and 25.9. The HA reduces the average path 

lengths by 15.7 and 12.4 compared to the PSO and 

LOS phases. From Fig. 11(b), the average number 

of iterations of PSO, LOS and HAs are 119.5, 92.7 

and 70.5. The iterations of the HA are reduced by 49 

and 22.2 compared to the PSO and LOS phases, re-

spectively. It is found that all the three algorithms 

are able to plan an OA path from the start to the end 

of the ANO path in simple, moderately complex and 

complex environments. However, the HA does not 

blindly conduct path search, and has better search 

results in the pre iteration period to quickly obtain 

the global optimal solution and find an Opt-P to 

avoid obstacles.
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Fig. 10. Comparison results of path planning and convergence curves of three algorithms in moderately com-

plex environments 
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Fig. 11. Comparison results of path planning and convergence curves of three algorithms in complex envi-

ronments 

 

5. Conclusions 

To address the limitations and risks of traditional 

OA methods, the study effectively combines the 

IACOA with the A*A. The combination of the two 

algorithms can effectively utilize the group intelli-

gence optimization capability of the ACO algorithm 

and the fast heuristic search strategy of the A*A to 

achieve a more efficient and accurate OA for SNS. 

The results indicated that in simple environments, 

the HA reduced the paths by 3.8 and 5.5, and the it-

erations of the HA decreased by 13.2 and 30.7 com-

pared to the LOS and PSO algorithms. In moderately 

complex environments, the HA reduced the average 

path lengths by 6.51 and 3.93, and the iterations of 

the HA decreased by 54.4 and 17.6 compared to the 

PSO and LOS phases, respectively. In complex en-

vironments, the HA reduced the average path length 

by 15.7 and 12.4 and the number of iterations of the 

HA reduced by 49 and 22.2 compared to PSO and 

LOS phases, respectively. This suggests that the two 

algorithms work together to fully utilize the A*A's 

SE and enhance the ACO algorithm's path 

optimization capabilities, resulting in an improved 

and more accurate OA of the SNS. Although the 

study achieved significant results, there are still 

some shortcomings. Due to the limited experimental 

conditions, the study can only verify the perfor-

mance in a simulated experimental environment, 

and the next step can be to apply the OA P-P method 

to actual sailing tests, so as to improve the practical-

ity of the method. 
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