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Abstract

The article deals with some issues related with the travel demand modelling in dense
street networks. Estimation of the trip distribution usually presented in a form of O-D
matrix has been described as one of the most important stages of this process. The
field of interest includes a short review as well as classification of the most popular
and applicable methods in this area. The main emphasis has been placed on dynamic
approach based on traffic counts. Advanced technologies used in traffic management
systems should rely on real up-to-date and exact not only average travel demand infor-
mation that provides efficient results. All above makes a background to formulate some
assumptions for the original concept of the O-D matrix estimation.

1. Introduction

Trip distribution is basic input data for many problems related with designing the
organizational changes, travel modelling and traffic prognoses within transportation
systems. It is desired both for the long-term planning and short-term traffic manage-
ment based on within-day dynamics. Such distribution is most likely expressed as
a square origin-destination (O-D) matrix and makes a mathematical representation
of travel demand.

Efficient traffic management requires information about the origins and desti-
nations of trips taken by particular groups of users, especially when some serious
events such as road incidents, car crashes, road works, and traffic emergences along
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with other untypical conditions occur. It is possible then to set the optimal diverse
routes within the street network based on uch information. The O-D matrices, updat-
ed in the given reference periods, describe the trip distribution and their estimation
may be based on the current traffic counts. A frequent input data update regarding
real traffic flows within the street network plays a key role in the traffic management.

A model representation of the actual spatial characteristics of trips within the
road network is a complex issue and the subject of many studies that require data
on zoning and land use planning, information about traffic conditions within the
network as well as all sorts of socioeconomic and demographic attributes. Such
features can be determined by different levels of aggregation. It makes the estimated
characteristics of trip distribution a close approximation of real traffic with various
degrees of accuracy.

Traffic forecasting and travel behaviour modelling are very complex especially in
dense street networks, which are characterized by high concentration of intersections
that cause frequent disturbance of traffic. What is more, significant variations in
the flow distribution due to its velocity and vehicle composition may also lead to
congestion and to longer times of journey. The number of alternative paths for each
O-D pair is much higher in dense street networks than in any other type of networks.
Thus, the demand flow between origin and destination distributes to a larger number
of paths causing a significant increase in computational complexity. In addition, a
high concentration of elements that generate and absorb trips enlarges the size of
the O-D matrix.

2. O-D Matrix as a Representation of Demand in
Transportation Network

The problem with estimating the trip distribution is one of the essential stages
in a four-step demand model that is among others used to prepare traffic prognoses.
It is a sequential model that contains a mathematical representation of travel be-
haviour. This staged representation goes from generation of demand (step 1: trip
generation), through the spatial distribution (step 2: trip distribution) and selecting
a way of travelling and mode of transportation (step 3: mode choice), to loading
the transportation network with trips (step 4: traffic assignment) [23, 28, 36]. All
four steps of the travel demand model which also are the sub-models are shown
symbolically in Fig.1. Even though the classical approach makes each step to obtain
results from the previous one, the theory shows different variants that combine
certain steps into whole or change the order of their realization [15, 36].

The study area in the travel modelling issues is usually divided into a number of
discrete geographical units the traffic analysis zones and represented by the centres of
gravity (centroids). They are defined as the points of concentration of the beginning
or end of individual trips. The network model usually takes the form of a directed



Dynamic Approach to the Origin-Destination Matrix Estimation. . . 391

graph [24, 29, 36]. Particular cells of the two-dimensional O-D matrix represent the
volume of demand flow, which is expressed in a number of trips between two zones.
In practice the centres of gravity can be linked to the model of transportation network
by so-called “connector links” or “centroid connectors” with specific characteristics.
They are identified as to represent the average costs of access to the centres of
gravity.
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Fig. 1. Scheme of four-step demand model

The O-D matrix maps interactions between the transportation system and its
surrounding for the part describing the problems to solve within the system. These
tasks are in the form of demand for transport as expressed in O-D pairs [24, 25,
29]. A single element of the O-D matrix can be then presented as:

e a constant value for fixed demand,
e a random variable with known distribution for random demand,
e a deterministic function that describes demand,
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e a probabilistic function that describes demand with the parameters defined by
random variables.

Depending on the location of origins and destinations within the study area,

one can distinguish the following types of trips [15]:

e internal trips (origins and destinations within the area),

e exchange trips (origins within the area and destinations outside the area, and
vice versa),

e crossing trips (both origins and destinations outside the area, but travels take
place partly within the area and therefore have influence on the transportation
network),

e external trips, entirely performed outside the area.

Figure 2 contains identification of specific types of trips within the O-D matrix for

the n zones within the study area boundary and m —n external zones [15]. The main

diagonal corresponds to intrazonal trips.
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Fig. 2. Identification of specific types of trips within the O-D matrix (based on [15])

The matrix can be further disaggregated, for example, by modes of transport,
specified time periods, different trip purposes, as well as groups of users (see Fig. 3).
These matrices can be provided for the existing or future states (traffic predictions).

3. Methods of the O-D Matrix Estimation

Depending on the objective of the travel demand model and forecasts to prepare,
as well as the precision of data available when estimating the O-D matrix one can
use different methods that can be divided into two main groups: the conventional
and unconventional ones [49]. Further division can be carried out assuming dif-
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ferent criteria of classification. Taking a research technique that has been used as
a basic criterion for grouping the conventional methods can be divided into direct
and indirect ones. The first ones are used to obtain a real picture of trips within
the sample (empirical methods) whilst the latter are used to build trip distribution

models (theoretical methods)

(see Fig. 4).
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Fig. 4. Classification of conventional methods of O-D matrix estimation (based on [49])



394 Renata Zochowska

Along with the techniques used in the empirical methods one should men-
tion among others home interviews, cordon surveys, aerial photography, a flagging
method (identification of vehicles at cordon and internal points by means of reg-
istration numbers, stickers, etc. [49, 54]), vehicle tracking, GPS or other modern
technologies. The O-D matrices resulting from such methods are based on advanced
statistical techniques, and their accuracy depends on the estimators that were used,
the degree of the network aggregation, the sample size, etc.

Theoretical methods can be divided into two groups: growth factor methods
and synthetic ones. There is a variety of the first group of methods, also referred to
as extrapolation ones. These often use some previously known O-D matrices (prior
matrices), as well as either the new numbers of trips from origins to destinations,
or specific growth factors. This group contains a variety of methods of different
complexity, from the simple ones based on uniform growth factors equal for the
entire study area to the sophisticated modifications of iterative Furness procedures
or the Fratar method [36].

In the case of growth factor methods one needs to remember that they can
be applied in state of relative stability only. It limits their usage to the short-term
planning horizons, and each error in the matrix for the base year can cause significant
deviations in the forecasting models. In addition, the estimation of reliable values of
growth factors requires an extensive database containing, among others, the results
of comprehensive traffic and transportation studies, information on the condition of
vehicles, hypotheses on development of motorization region- and nationwide, annual
average daily traffic and the length of public roads, as well as the characteristics
of the regions in terms of urbanization and the type of land use [35]. There is
also the need of forecasting the development of the transportation sector, GDP and
demographic prognoses, as well as information about the split of tasks among the
means of transportation.

The dynamically developing regions are characterized by frequent changes in
the structure of the transportation system. They may be associated for example with
the land use development. When analysing such regions one needs to apply models
that consider the significant determinants affecting trip generation. In these models
one analyses travel behaviours of the system users in the context of distance, time
or travel costs, as well as attractions of the zones in terms of the purpose and the
accessibility of the transportation system. The users are divided into homogenous
groups based on purpose of travel. They can be further split according to for example
income level, car ownership or household size and structure.

The solutions resulting from the use of synthetic methods should oscillate be-
tween two extreme models, referred to as the minimum and maximum (proportional)
models [37]. The assumption for the minimum model is that at first for each purpose
of travel demand is satisfied within the same zone — the maximal intrazonal trips
occur. Then the outnumbered demand flows are shifted to the nearest zones with the
great attractiveness determined by number of trip attractors within given purpose.
This is a model with the smallest dispersion, which provides the lowest travel costs.
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In turn the demand flows in the maximum model (the model with the largest disper-
sion) spread out proportionally to the number of trip attractors in particular zones.
Assuming that the attractiveness of all zones is equal, the model produces the most
probable trip distribution in the conditions of a random selection of destination. The
probability of its occurrence increases with the growth of number of zones. The
proportional model often makes a starting point for many other synthetic methods.

The model proposed by Lilpop was one of the first synthetic models applied
in Poland producing real trip distributions. It uses a dispersion factor, determined
experimentally, that is equal for all O-D pairs [37]. This, however, does not take into
account the influence of distance or travel time on the volume of trips. It results in
a fact that the demand flows between remote zones are considerably overestimated
and the ones between the nearby zones are underestimated.

The most currently used methods the gravity methods are based on the as-
sumption that the number of trips between the two zones is proportional to their
productions and attractions. It also takes into account spatial interaction in form of
so called a deterrence function. It associates the number of trips for the O-D pair
with the cost of travelling between origin and destination zones [23, 36, 37]. Over
the years the method used for the first time by Casey [17] has undergone many
modifications. Depending on the form of used deterrence function, as well as the
limitations and conditions to model one can formulate different variants of gravity
methods.

Other assumptions come with the intervening opportunities model, where the
number of trips between two zones depends on attractiveness of the zones and
the probability of destination choice at the earliest accessible opportunity. Such
probability decreases with the distance increasing between a given O-D pair. Stouffer
[48] has introduced the concept for the first time and applied it to describe the
migration and location of the residential and public areas in cities. However, it
is Schneider [38] who has developed this theory to the form currently used in
modelling of the travel behaviour of users. For many years this method has been
developed in Poland by Zipser [3, 30].

There are also models that combine the elements of the gravity and interven-
ing opportunities methods in a form of gravity-opportunity models. Wills [53] has
formulated first assumptions for such problem. He proposed a flexible model in
which classical forms of gravity models and intervening opportunities were treated
as special cases. The choice between these models is determined empirically by
certain parameters affecting the manner of the O-D matrix estimation. Tamin and
Willumsen [50] have made its generalization.

Some computational methods, including the gravity methods and Furness method,
can be generalized by the entropy model. The theory of entropy assumes that in the
transportation system depending on the level of aggregation there are microstates
(e.g. characteristics of individual users, their origin and destinations, mean of trans-
portation, travel time, etc.), mesostates (e.g. the number of trips for particular O-D
pair), and macrostates (e.g. the total number of trips on various sections of the
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network, the total number of trips generated or attracted in each zone, etc.). To
determine a reliable measure of activity of travellers it is often easier conduct ob-
servations at a higher level of aggregation. The O-D matrix is estimated at the level
of mesostates.

By using the theory of entropy one can generalize both, the gravity models and
the models of intervening opportunities [36]. The analysis of transportation systems
may use a maximum entropy criterion that allows one to expect the trip distribution
with the greatest possible value of the measure of uncertainty (entropy), associated
with the probability distribution. Such procedures can be applied to estimate the
demand flows; they can also be used at the lower levels of aggregation (e.g. assigning
flows to the transportation network) [20].

According to the classic methods, estimating the O-D matrices typically requires
surveys on a large scale. Additional information, such as detailed sociological and
demographic data describing attractiveness of the zones within the area, and char-
acteristics of individual groups of users with the homogeneous travel behaviours
usually are necessary to model travel demands. Hence, these methods are expensive
and time-consuming. Results obtained in such manner can be easily out of date due
to the dynamic nature of traffic within urban areas. The O-D matrices obtained from
surveys do not include temporal variations of travel demand resulting for example
from the time of a day, seasons, organizing the mass events, or weather conditions.
For the long-term planning such forms are sufficient enough, while classic methods
do not work for the necessity of continues updating of input data according to the
current situation on the road (traffic control and management, emergency situations).

For that reason, for several decades now, the O-D matrices estimation has been
supported by additional techniques and sources of information. Monitoring of urban
areas spreading increasingly used to obtain data on the volume of traffic flows on
particular links is becoming an attractive alternative to collect additional data for
the trip distribution estimation. There have also been attempts to build the matrix
based on new technologies such as genetic algorithms [39], neural networks [57],
or fuzzy logic techniques [26].

Due to the high complexity of the travel demand modelling process and the
necessity to repeat certain stages of the process during model calibration and veri-
fication, special IT tools supporting the computational process started to be devel-
oped. Classic methods and their modifications were implemented in a number of
computer applications for travel demand forecasting and complex traffic analyses.
Among the most popular software packages used in Poland, one should mention
VISUM, EMME/2 and SATURN [61]. Specialised packages are usually sufficient
for everyday applications. However, in case of non-standard travel demand modelling
or when new computational procedures are being developed or modified, it may well
turn out that the traditional package is not enough and a new software tool needs
to be developed.
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4. The Dynamic Approach to the Trip Distribution

Estimation of the O-D matrix can also be considered in terms of demand vari-
ability over time. Then models can be divided into static and dynamic ones. It is
assumed that demand for travel and supply of the transportation system within the
first group does not change in time. The latter methods assume variability of demand
and supply over time, and therefore they are more complex and require much more
input data. These models are perceived to be superior to static approaches due to
their potential ability to capture the spatial and temporal evolution of traffic on
the network. When estimating the forecasting models, frequently used to plan the
transportation systems, both models can be applied. On the other hand, dynamic
models are mainly used in traffic control and traffic management (as in Advanced
Traffic Management Systems, Advanced Traveller Information Systems, etc.). In
research investigations, these models have been used for diverse applications such
as High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) lane analy-
ses, congestion pricing, work zone management, evacuation planning and vehicle
routing. They can base on the link traffic counts [46].

There are many works and publications on the dynamic estimation of the O-D
matrix [2, 4, 7, 11, 12, 19, 41]. They are both, theoretical and practical, and most
of them were verified on the rural road networks, where the number of intersections
with traffic lights was negligible, and the number of paths for a given O-D pair was
limited [9]. Dynamic estimation of the O-D matrix allows providing for changes in
demand over time.

In addition, the problem of changes in time itself can be modelled in different
ways. It is common for the dynamic approach that the referred period is divided
into a sequence of smaller time periods (time intervals) and, due to the traffic
volume variability over time, the estimation process is carried out separately for
each time interval. Current traffic volumes are recorded in these intervals [58, 60].
The values of a priori O-D matrix for particular time interval are derived from
estimated trip tables for the previous interval. There are also some other approaches
to these issues, as for example in [11]. The graph describing the structure of the
transportation network in the space-time continuum has been extended by introduc-
ing a supplementary matrix. For each time interval the matrix identifies the number
of intervals needed for passing through a given link, occupied by a vehicle. Using
such interpretation the dynamic problem can be reduced to the static problem within
a particular space-time continuum.

4.1. Estimation of O-D demand flows using traffic counts

From a certain point of view estimation of the O-D matrix, based on traffic
counts is an inverse problem to the traffic assignment, as it is shown schematically
in fig.5. The assignment problem focuses on calculating the link flows with the O-D
flows, network and path choice models as input data. Conversely, the problem under
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study is that of estimating the O-D flows starting with measured link flows, as well
as using the network and path choice models. Estimation is therefore reduced to
finding a reliable O-D matrix, which, when assigned to the network, reproduces the
observed traffic counts.

ESTIMATED
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Fig. 5. Comparison of two processes: estimation of O-D matrix based on traffic counts with traffic
assignment

The general relation between the link volumes and the OD-flows can be written

as [1]: .
5= D, 8020 (1)
(a,b) €E

where:

x;j (¢) — traffic volumes on link (i, j) € L over time ?,

L — set of links within the transportation network,

R — the car occupancy factor,

E — set of O-D pairs,

x® (t) — O-D flows for (a, b) € E over time ¢,

6,4]?’ (#) — fraction of trips for O-D pair (a, b) € E that uses link (i, j) € L over
time 7.

It is assumed for such methods that for a certain subset of links L € L and
for a specific time interval ¢ (e.g. peak hour, average day) the volume of traffic
is known. Using formula (1) for each link (i, j) € L, where L is a set of links
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with the obtainable traffic counts, one can build a system of n equations with m
unknown variables (n — number of observed links, m — number of elements of
the O-D matrix). Typically the number of unknown variables is greater than the
number of equations — the system is underspecified (or degenerate) and may have
many possible solutions. In such case the total number of O-D pairs can normally
exceed the number of links for which traffic counts have been collected [1]. It means
that there are many O-D matrices, which, when assigned to the network, reproduce
the observed traffic counts — they give the same result. Therefore, searching for
O-D matrix is equivalent to searching for a matrix satisfying the given boundary
conditions and properly formulated optimization criteria. Often, to find a unique
solution, one needs additional data such as in the form of so-called a priori or target
matrix, obtained by other synthetic methods or a historical matrix (for an earlier
time period).

Selecting the proper objective function is not simple. Usually, the function rep-
resents a measure of distance between the model solution (x;; (¢) or x® (1)) and the
real or assumed values (£;; () or xab (1)). During the estimation process the function
is being minimized. Some methods are focused on differences between estimated
demand flows x () and elements of a priori matrix £%° (f). The distance between
them may be expressed — in a general form — as a function F (x”b (1), £ (t)). The
observed set of traffic counts £;; (£) may also be assumed to be very exact reproduc-
tion of traffic counts obtained as an assignment of the estimated O-D matrix. Hence,
such values of demand flows x® (r) are sought which give the smallest differences
between the estimated link flows x;;(#) and the real ones £;; (¢). This assumption

may be expressed as a criterion F» (x,-j (), % (t)). Although the assumptions and
concepts of various methods used to estimate the O-D matrix differ among each
other, their generalized form may be as follows [1]:

F(x® (1), xi; (1) = 71 Fy (x (1), £ (1)) + y2F2 (i (), £ (1) )

where:

£% (¢) — real or assumed values of O-D flows for (a, b) € E over time 7, element

of a priori O-D matrix,

X;j (1) — observed traffic counts on link (7, j) € L over time ¢,

F,, F, — distance measures in functional form,

v1, Y2 — weights determining a degree of reliability of data used in the model.

If the a priori O-D matrix is more reliable, as it has been for example built
based on reliable surveys and still contains largely valid data, then y; should take
much higher value compared to y,. It will make the modelled O-D matrix more
convergent to the a priori matrix. In such situation, greater deviations between
the traffic volumes obtained from the traffic assignment and observed ones are
accepted. However, if the observed volumes are more reliable than the information
contained in the a priori matrix, the value of y, should be much greater than the
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parameter y;. Thus, the values of weights in question are closely related to the
modelling approaches and assumptions.

4.2. Methods of O-D matrix estimation based on traffic counts

Taking the applied research technique into account, one can divide the methods
of O-D matrix estimation based on traffic counts into three main categories as
follows (Table 1) [1]:

o traffic modelling based approaches,

e statistical inference approaches,

e gradient based solution techniques.

One of the first models based on a concept of traffic modelling have been developed
by Van Zuylen and Willumsen [51, 54]. They were based on the assumption of
the proportional assignment, which does not take the degree of traffic congestion
into account. It is Fisk [22] who has introduced the idea of extending the mo-
del of entropy by Van Zuylen and Willumsen. He took the traffic congestion into
consideration by introducing the boundary conditions in the form of equilibrium
assignment that satisfies the first principle of Wardrop [52]. Further development
of such methods went mainly towards the use of both, the gravity methods and
intervening opportunities to estimate the O-D matrix [50].

Table 1
General classification of methods of O-D matrix estimation based on traffic counts

RESEARCH TECHNIQUE RESEARCHER

e Van Zuylen, Willumsen (1980)

e Fisk (1988, 1989)

traffic modelling based approaches o Tamin, Willumsen (1989)

e Sherali, Sivanandan, Hobeika (1994)

o Sherali, Narayanan, Sivanandan (2003)

statistical | maximum likelihood method o Spiess (1987)
inference e Cascetta (1984)
approaches | generalized least squares method | e Bell (1991)

e Bierlaire, Toint (1995)
Bayesian inference e Maher (1983)

e Spiess (1990)

e Chen (1994)

gradient based solution techniques

Along with the development of technology these methods have undergone some
modifications. Sherali [42] was one of those who worked on using a linear pro-
gramming approach in estimating the O-D matrix based on the link traffic counts.
Optimization of the objective function introduced in his model was to minimize
the sum of travel costs and deviations between the assigned and observed values
(traffic counts and the prior O-D matrix). In the following publications Sherali has
adapted the model to a situation in which traffic volumes are not known on all
links [40]. The solution can be determined only for certain, fixed points that were
estimated heuristically by fitting iteratively a nonlinear model with a sequence of
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linear programming techniques. Sherali has also developed other models used in

estimating the O-D matrix in the dynamic approach [41].

It is assumed for the methods using statistical inference that the link traffic
counts are treated as realizations of independent Poisson random variables. Most
commonly these models use techniques of maximum likelihood [45], a method of
generalized least squares [7, 14], and Bayesian inference [31].

Gradient techniques are usually used in street networks of considerable size and
are based on iterative correction of the a priori matrix according to the gradient of
appropriately formulated objective function [44]. These models are not restricted
only to the proportional assignment ones, but also they are equally well applicable
with the equilibrium assignment.

The other important feature distinguishing the various models used to estimate
the O-D matrix is a way of treatment of congestion in the estimation process.
Typically, the congestion is included in a link cost function (often expressed in time
units) that depends on traffic volumes. In the modelling process, the congestion can
be treated exogenously (the proportional assignment) or endogenously (the equilib-
rium assignment). The first one is used in networks with no congestion or when the
level of congestion is predictable. It is characterized by relative stability [1]. The
latter should be considered in the networks with congestion, and depends on traffic
conditions.

Most models use only the relation between the cost and traffic volumes that
affect only the analysed link. In more general cases one also needs to take into
account the influence of traffic volumes on the neighbouring links, as in the form of
variance inequalities. Given these issues one can classify the methods of estimating
the O-D matrix based on traffic counts by a structure and complexity of network
and possibilities of path choice [18]. Thus, one can build various models for the
following groups:

1. a simple road network with no choice of alternative routes — in these methods
one can use information about the turning probabilities usually in form of relative
size of turning volumes at intersections [5]. They heavily affect the accuracy of
turning flow estimates and have been considered as one of the critical input;

2. adense road network with a route choice, in which there is no traffic congestion
(the network without congestion) — when estimating the matrix one assumes
that trip distribution (proportional) and traffic assignment can be independent
processes. The assignment may be estimated for instance based on the observed
travel times or velocities and assumptions concerning the route choice. To de-
termine the measures of convergence one can apply some of the aforementioned
statistical methods (Table 1) [7, 12, 14, 31, 45, 51];

3. a dense road network with a route choice, in which there is severe traffic con-
gestion (the network with congestion) — in these methods one cannot accept the
assumption of proportional assignment, since the route choice and the O-D ma-
trix estimation are interdependent. The process is iterative, which means that the
results from the traffic assignment are used to estimate the O-D matrices. These
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matrices are then assigned again on the network, revised, etc. [8]. Therefore,

the other assumptions of the route choice model should be taken into account.

One of the possible solutions to ensure this interaction is bi-level programming

approach that is to determine the proportion of route choice while estimating

the O-D matrix [22, 32, 55]. In this method, upper-level problem uses one of
the previously mentioned statistical techniques (such as generalized method of
least squares) to find the most appropriate O-D matrix, while the lower-level
problem assigns traffic to the network endogenously (according to for example

Deterministic User Equilibrium or Stochastic User Equilibrium) based on the

results of earlier estimation. However, the bi-level programming issues can en-

counter difficulties with the computational complexity while estimating the O-D

matrix for the networks of large sizes.

Nearly all models to estimate the O-D matrices based on the traffic counts use
some prior information, which can be presented in the form of the a priori O-D
matrix or total number of trips generating and absorbing in particular zones. The a
priori matrix can be estimated by classical methods of modelling based on empirical
research; this may also be a historical trip table (often no longer valid) [1]. Hence,
there is the need to take the a priori matrix and its typology into account. This is
yet another characteristic that can be used to divide the models into these where the
a priori matrix is obligatory (as in [7, 31, 44, 45]) and these where it is facultative
(as in [14, 22]).

In addition to those mentioned above, there are many other criteria of dividing
the methods of estimating the O-D matrix. An example of such might be the de-
gree of network elements aggregation (methods for aggregated and non-aggregated
networks), the use of networks by various means of transportation (the method for
unimodal and multimodal networks), size of the network (methods for large and
small networks), or the location of the analysed zone (methods for urban and rural
networks).

4.3. Generalized estimation of the O-D matrices based on traffic
counts

The process of estimating the O-D matrix based on information about the traffic
counts can be generalized and represented schematically as in Fig. 6. In the dynamic
approach the analysed time period is divided into intervals during which the traffic
counts are recorded. Hence, the presented estimating process should be carried out
separately for each time interval due to the variability of demand over time.

The input data include a description of the network structure using graph theory
and the O-D matrix structure as a set of O-D pairs. Due to the dynamic approach to
the problem, values of the traffic counts in the following time intervals also become
the input data. Additional data can be related to for example technical and traffic
characteristics of nodes and links. In a real situation, a set of links £ c L for which
one can obtain the traffic counts is often much smaller than the set of all links L.
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Therefore, there are different methods to estimate the missing link flows [43]. The
essential problem concerns also the proper traffic count locations [10, 21, 56].
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Fig. 6. Scheme of O-D matrix estimation based on traffic counts

Estimation of the initial O-D matrix depends mainly on the chosen estimation
algorithm. It often includes values determined based on previous demand matrices
(obtained empirically or analytically) or estimated from the observed traffic counts.

As it has already been mentioned, selecting the right objective function is not
a simple task. Typically, it represents the measure of convergence of the obtained
results and the real or assumed values of the O-D flows (formula 2). Mostly to
ensure the highest degree of convergence one can use the following methods: least
squares [2, 13, 14], maximum entropy [6, 51], or maximum likelihood [45]. The
objective function is usually defined for all links, but it can also be determined
only for a critical link (for instance with the largest deviations from the empirical
values). The initial value of this function is often estimated based on the previous
O-D matrix.

For each element of the network (such as links or nodes) one can assume a
value of the cost function, which typically depends on variability of traffic counts
over time. Such function represents the cost of travelling on this particular element
of the network. The ways of its estimation can differ due to level of complexity —
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from assuming some constant parameters (such as, so called, “the time penalties” for
turning flows) to applying sophisticated methods (dynamic estimation of the delays
for particular elements of the network).

The iterative process includes finding the shortest path and analysis of their
choice probability for the particular O-D pairs. It also covers traffic assignment,
correction of the O-D matrix and update of the objective function. One also needs
to consider estimating the value of the link cost function based on new theoret-
ical traffic volumes as well as to check the conditions of convergence achieve-
ment.

Algorithms of finding the shortest paths in the network are among the matters
with the highest computational complexity, which increases with the size of the
network. The time of estimation in the dynamic methods is very important. Despite
the increasing technical possibilities of the IT tools one seeks the algorithms with
the lowest computational complexity. For each of the O-D pairs the paths with a
minimum temporal value of the link cost function are estimated. One needs then to
determine the probability of path choice by users for the particular O-D pairs. In the
dense networks for some O-D pairs one can find a few, a dozen or even more paths.
A fraction of the demand flows are then assigned to the selected paths. Typically
this process also is iterative. The paths for each O-D pair can be determined by one
of the shortest (cheapest) path methods [27, 34, 47], taking travel times or costs in
form of properly expressed link cost function as a temporal objective function to
minimize.

The choice of a proper method of traffic assignment depends on the purpose of
research, problem specific character as well as traffic conditions and organization. At
this stage one can go for more or less complex models applied both in the statistical
and dynamical methods. The problem of the dynamic traffic assignment (DTA) to
the network by determining the time-varying traffic volumes can be solved both
analytically [16] and by using simulation tools [33, 57].

The optimal instantaneous traffic assignment expressed in the form of a matrix

[x,»j (t)]>k is the one that follows the formula:
.. * — 1 ab ..
[ 0] = argmin F (x (0, x; 1) 3)

After establishing a model traffic assignment to the network, the correction of the
O-D matrix takes place. Then one calls for the update of the objective function and
estimating the value of the link cost function based on a new volume of traffic. These
changes are necessary to evaluate the temporal objective function and to achieve
the assumed convergence. If the degree of convergence satisfies the established
conditions then the estimation can be completed. Otherwise, one needs to correct a
method of determining the trip distribution model. This may involve a change of:
e values of parameters or of the functional form of the link cost function,

e method to find the shortest paths in the network,

o the traffic assignment method,
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e the network structure,

e other factors affecting the obtained solution.

The estimating process is repeated for the next time period for which the values of
the traffic counts have been observed.

5. Concept of the Method to Estimate the O-D Matrix
Using Traffic Counts

The proposed method is consistent with the scheme presented in Fig. 7. Dynam-
ic character of this approach lies in the fact that elements of O-D matrix are estimated
mainly on the basis of trip tables determined for the previous time intervals.
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Fig. 7. Scheme of proposed method to estimate O-D matrix based on traffic counts

The method requires, among others, the knowledge of:
e the structure of the road network in the form of a directed graph,
e characteristics of the network elements (such as capacity, velocity, etc.),
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traffic counts for all links of the analysed network in the following time intervals,
the structure of the O-D matrix as a set of O-D pairs,
elements of the prior O-D matrices obtained on the basis of trip tables estimated
over previous intervals.
Following are the notations — in alphabetical order — used to express the short outline
of the method described in this section.

(a, b) — O-D pair, (a, b) € E,

cij ()2,»_,» (t)) —  generalized cost of travelling on the link (i, j) € LP*" over time 7,

chab ()6,- J (t)) — generalized cost of travelling between a and b on the p-th path,
p € P,

E — set of O-D pairs,

E;; (1) — travel demand components of traffic volumes on link (7, j) € L over
time ¢,

@, J) — link within the street network, (7, j) € L,

L — set of links within the street network,

Lpab — set of links between (a, b) € E, belonging to the p-th path, p € P,
P e L,

Loy — critical link, /.. € L,

P — set of paths for O-D pair (a, b) € E,

peb (?) — set of paths for O-D pair (a, b) € E over time ¢,

P — optimal path for the pair (a, b) € E,

R — the car occupancy factor,

T — reference period,

t — time interval, t € T,

x® (1) — estimated O-D flows for (a, b) € E over time t,

x}’}’ (1) —  historical O-D flows for (a, b) € E over time ¢,

x,‘-’;’ ) — estimated O-D flows for (a, b) € E on link (i, j) € L over time ¢,

£ ® — real or assumed values of O-D flows for (a, b) € E over time ¢, element
of a priori O-D matrix,

X (1) — estimated traffic volumes on link (7, j) € L over time ¢,

X (@) — observed traffic counts on link (i, j) € L over time ¢,

Zf — assumed critical value of coefficient 87 (1),

B (1) — coefficient of increase in the generalized cost of travelling between a
and b on the p-th path, p € P,

(51‘-’;’ 0 — fraction of trips for O-D pair (a, b) € E that uses link (i, j) € L
over time 7,

€l — accuracy factor.

The analysed reference period 7 has been divided into intervals f. For the
current version for each O-D pair (a, b) € E, one can establish any number of paths.
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The set of paths determined by the set of O-D pairs and the graph representing the
network structure is initially the same for all time intervals. Only in the later stage
it will be limited to the most rational alternatives in particular intervals.

The main assumption is that the users choose the optimal route according to
a particular criterion or set of criteria, taking into account the current traffic volumes
X;j (t). Such selection is based on travel costs on particular paths. The generalized
cost of travelling between a and b on the p-th path can be written as:

chab ()eij (t)) = Z Cij ()?,‘j (l)) 4

(i,j)ELl’*“h

However, this relation is satisfied providing that the generalized travel cost covers
the characteristics that are additive.

In dense street network there is a significant number of paths for many pairs
(a, b) € E. Thus, the temporal coefficient ,8"’“” (#) is being analysed for each path
p € P™ that (a, b) € E. Such coefficient puts a limit on the number of analysed
paths. It describes the degree of increase in the generalized cost of travelling on the
path to the generalized cost of travelling on the optimal path p*, as it is shown in
the following formula:

P (% (1)
IB[’,(lb (l,) — : ( J ) (5)
cpab (fij (f))
where the optimal path p* is specified for each pair (a, b) € E as:
x “ab (o _ : ab [~
Pt (% (0) = min { " (2 ()} (©6)

The probability of choosing the particular path by the users decreases with the
increase of values of the coefficient 87° (¢). Some paths p € P? can not be selected
within a specified time interval at all. Thus, number of paths for each pair (a, b) € E
may vary in the following intervals ¢. This can be written in the form of a set of
temporal paths P (r). Assuming a critical value ﬁgf for each pair (a, b) € E one

can formulate a condition of joining the p-path into the set P?(z) as:

P ()= {p: " (1) < By, p € P”.(a.b) € E} (M
Paths, for which this condition is not met are rejected in a given interval ¢ and are
not consider in the traffic assignment.

The simplified form of probability of estimated temporal paths’ choice for the
pair (a, b) € E based on a selected criterion, such as the generalized travel cost,
may be estimated under assumption that, before making the trip, the user chooses
a sequence of road segments to follow toward the destination. In practice, various
random utility models can be used to obtain such probability [59]. The most popular
of them belong to the logit or probit models.



408 Renata Zochowska

In this version of method the a priori O-D matrix [)?“b (t)] is determined on

the basis of both historical O-D matrix [xi}’ (t)] and trip table [x“b (t- 1)] estimated
over the previous time interval. Values of historical O-D matrix elements depend
on the estimated matrix for the same period of day on other days (especially on the
same day of the week — this figure may have greater weight). Determined a priori
O-D matrix [)E”b (t)] is then assigned to the network in accordance with the path
choice probability distribution specified earlier. The values of traffic volumes x;; (1)
on link (7, j) € L over time ¢ are results of this process. Thus, the prior O-D matrix
[)?“b (t)] becomes the first estimate of O-D matrix [x“b (t)].

The sum of the absolute values of deviations between the observed £;; (r) and
assigned flows x;; (7) is the objective function F (¢). The function is being calculated
for each time interval ¢. Therefore, it can be written as:

Fi= ) ;@ -x;0) 8)

(i, DeL

The value of the objective function Fy(f) is compared with the accuracy factor
€1, which being the measure of convergence determines the acceptable level of
deviation. This level may be determined depending on the aim of modelling and
the degree of data aggregation. If the value of the objective function F (¢) is bigger
than the assumed accuracy factor €1, one must modify the elements of a priori O-D
matrix £% (7). It is iterative process that involves the following stages:

1) identification of a critical link in street network.

A critical link appears when an absolute deviation of the assigned flow value from
the measured one reaches the highest value, as it is shown in the following formula:

ler < |1, ) = x, )] = max £ (1) = xi; ()| 9)

2) specification of travel demand components of traffic volumes x; (¢) on a critical
link.
The travel demand components create a set E; . (1) C E, determined as:

E,,0)=1@bh): Y x"® =x,0), locL @beEf  (10)
(a,b)

where estimated O-D flows xl“b (¢) for (a, b) € E on a critical link /., € L over

time ¢ may be calculated, according to the formula (1), as:
1
X" (1) = E(s;jf (1) - x (1) (11)

3) adjustment of estimated O-D matrix [x“b (t)].
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The current version of the method assumes that the process of adjustment is
applied only to the elements of a set E;, () C E. Thus, some values of estimated
O-D matrix [x“” (t)] are changed in such a way as to equalize the values of
estimated traffic volumes x;, () on a critical link and values of traffic counts

Xy, (¢) for this link. The distance between values of estimated O-D matrix [x“b (t)]

and the prior matrix [)?”b (t)] for O-D pairs belonging to the set E;, (#) € E may
be taken into consideration as well.

4) assignment of adjusted O-D matrix [x“b (t)] to the network.

This process is carried out in accordance with the previously estimated path

choice probability distribution. It leads to estimation of new values of traffic

volumes x;; (¢) and re-calculation of the objective function F (z).

Iterative process is repeated until a satisfactory convergence criterion is met.
This is equivalent to achieving such a value of the objective function F; (¢) that
is equal or less than accuracy factor ;. The estimated O-D matrix [x“b (t)], which
resulted in obtaining such value, is regarded as a final form and may be used to
estimate trip table [x“b (r+ 1)] over the next time interval. The optimization process
is to minimize the objective function for each time interval ¢. This is to obtain
such an O-D matrix (for each interval) that after assigning to the network gives the
volumes with the highest degree of convergence with the observed results.

6. Conclusions

The article deals with the overview of methods of estimating the O-D matrix
in dense street networks, including their specific characteristics and application. A
particular attention has been paid to estimating the O-D matrix based on the traffic
counts. Due to the possibility of applying to the dynamic problems, such methods
can be used in effective road and traffic management.

A review of the presented methods of estimating the trip distribution indicates

the variety of theories used for this purpose. One needs to keep in mind that choosing
the right one depends on several factors, dependent or independent from each other.
The most important among others would include:
the structure and type of input data as well as their degree of aggregation,
limitations and requirements of the particular methods,
the structure and degree of congestion in the transportation network,
the purpose of modelling and its practical application,
dynamics of the transportation system development in the analysed area,
accessibility of IT tools.
A schematic approach to the components of methods used to estimate the O-D
matrix will help to isolate issues directly related to the computational process that
affect the accuracy of obtained matrices, and their convergence with a real situation.
Depending on the sub-models used, better or worse results may be expected.
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A described here concept of a method used to estimate the O-D matrix in the
dynamic approach has a modular structure. At first the simple sub-models have been
used. Applying more sophisticated procedures requires additional research. The aim
of the method is its high flexibility, which helps to verify the results obtained by
different (more or less complex) sub-models and their combinations.

Further studies should focus on a development of various components. They
should also analyse the influence of particular sub-model application on the con-
vergence of the obtained results with the actual data. The model can also be a
part of more complex management system that uses information about the current
network volumes to control traffic. After performing a suitable modification some
procedures could be also useful to the forecasting models and real-time navigation
systems.
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