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Abstract: 

Across the United States, wildlife vehicle crashes (WVCs) are increasing and remain consistently deadly to drivers, 

despite a downward trend in fatal automobile accidents overall.  That said, the factors related to severe WVCs are 
unclear.  With this in mind, we pursued a statistical model to reveal factors associated with WVCs that result in severe 

injury or death to drivers.  We hypothesize that there are statistically significant interactions and non-linear relation-

ships between these factors and severity occurrence.  We developed a generalized additive model (GAM) with linear 
terms, additive terms, and a binary response for severity.  We surmise that our fitted model results will quantify the 

relationship between significant variables and severity occurrence, and ultimately help to develop countermeasures 

to mitigate serious injury.  The model was fitted to WVC records occurring between 2002 and 2019 in the state of New 
Hampshire.  Fitted linear terms revealed:  1) in inclement weather, there is about a 22% increase in the odds of 

severity for slick surface conditions compared to dry surface conditions; 2) for the warmer months (spring/summer), 

there is a 42% decrease in the odds of severity for straight roads compared to those with curvature/incline; 3) for 
highways, the odds of severity decreases by 48% for accidents occurring on NH’s two major intestates highways, and 

4) for spring/summer (as compared to the fall/winter), there is more than a 3-fold increase in the odds of severity for 

two-way traffic.  Fitted additive terms revealed:  1) the odds of severity increased in the early hours, between midnight 
and 6AM, and after 5PM; 2) speeds between 45 and 60 mph are associated with an increase in the odds of a severe 

accident, while both lower and higher speeds (those below 45 and above 60 mph) are associated with a decrease in 

the odds of a severe accident; and 3) low, mid-range, and high human population densities are associated with de-
creases, increases, and decreases in odds of severity, respectively.  Cross validation and resulting ROC curves gave 

evidence that our model is well specified and an effective predictor.  Results could be used to inform drivers of poten-

tially dangerous roadways/conditions/times. 
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1. Introduction 

Currently, in the United States, it is estimated that 

there are between one and two million crashes be-

tween motor vehicles and large animals each year 

(Skroch and St. Hilaire, 2021). Most recently, ac-

cording to State Farm Insurance Company, during 

the 12-month period between July of 2020 and June 

of 2021, this number exceeded 2 million (Ortega, 

2022). Such accidents result in approximately 

26,000 human injuries and at least $8 billion in prop-

erty damage per year, and in some rural states, these 

wildlife-vehicle crashes (WVCs) represent as many 

as 20% of all reported collisions (Skroch and St. 

Hilaire, 2021). As stated by Huiser et al. (2008), 

WVCs are amongst the leading concerns for road 

safety in the rural areas of North America   

Despite an overall flattening trend of automobile ac-

cidents across the US, WVCs are increasing, likely 

caused by increases in both travel and some animal 

populations (Huiser et al., 2008). Furthermore, ac-

cording to the Insurance Institute for Highway 

Safety (IIHS), the number of deaths due to WVCs 

been consistent since the mid-2000s, despite the fact 

that fatal automobile accidents have been generally 

decreasing since 1975 (IIHS, 2022). In 2020 alone, 

there were 202 reported human deaths due to WVCs 

in the United States (IIHS, 2022), two of which oc-

curred in NH, the focal area of this study. The num-

ber of deaths due to WVCs vary considerably from 

state to state, but totals typically reflect the size of 

the driving population, the size of the animal popu-

lation, and the percentage of rural roads (IIHS, 

2022).   

With all this in mind, we investigate WVCs with a 

particular focus on those that result in injury to the 

driver. We aim to identify the characteristics that 

distinguish serious WVCs from their less serious 

counterparts, to model the severity of the human in-

jury. More specifically, our working hypothesis is 

that there are statistically significant interactions be-

tween predictors; season, time-of-day, weather con-

ditions, roadway features/geometry, speed limit, 

etc.; as well as non-linear relationships between such 

predictors and severity occurrence. To this end, we 

conducted a multiple logistic regression analysis 

with 20 potential variables (not including interac-

tions between variables), carefully selected based on 

existing literature focused on similar studies (See 

Literature review). We surmise that our fitted model 

results will allow us to quantify the relationship be-

tween significant variables and the occurrence of se-

vere WVCs. Then, as stated by Gharraie and Sacchi 

(2020), after identifying factors that distinguish se-

vere accidents, effective countermeasures may be 

pursued to mitigate the degree of human injury sus-

tained in association with WVCs. To date, there are 

many thorough works investigating the characteris-

tics associated with WVCs, or essentially when and 

under what circumstances WVCs occur. However, 

only a minority of these explicitly model the severity 

of the WVC. Additionally, our work makes use of a 

hybrid model, a flexible platform comprised of a va-

riety of linear terms (including interactions) and ad-

ditive terms. 

 

2. Literature review 

In the following sections, we present the relevant lit-

erature used to inform our procedure. First, we re-

view works identifying characteristics/factors/varia-

bles associated with WVC occurrence/frequency 

(Section 2.1). These works do not address the sever-

ity of the accidents, as in this analysis, but such lit-

erature can help to inform our procedure. That is, 

many of the characteristics associated with WVC 

occurrence/frequency are also likely to help distin-

guish WVC severity. Next, we review works analyz-

ing accident severity of automobile accidents (Sec-

tion 2.2). There is a rich field of work in predicting 

accident severity and identifying the factors that dis-

tinguish accidents of varying severity, but few de-

voted to WVCs specifically. Lastly, and most rele-

vant to our work, we review the few works devoted 

to studying accident severity among WVCs (Section 

2.3). 

 

2.1. Characteristics related to WVC occur-

rence/frequency  

2.1.1. Time-of-day 

In their review of WVCs in Texas between 2010 and 

2016, Wilkins et al. (2019), found peaks in occur-

rence between 5 and 8 AM and between 5 and 10 

PM. In a study of moose and deer in Finland, Haiko-

nen and Summala (2001) found crash peaks an hour 

after sunset for deer, and generally that WVCs are 

more likely to occur at night when some species are 

more active. Rowden et al. (2006) studied WVCs in 

Australia and found that nighttime trips and areas 

with higher speeds were a major risk factor com-

pared to other accident types. Bil et al. (2017) found 
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that Roe deer account for the vast majority of WVCs 

along the Czech road system, and most of these oc-

curred within a few hours of sunrise and sunset. In 

an older work, Hughes et al. (1996) analyzed several 

years of WVCs across the United States. They 

found, among other trends, that the greatest number 

of animal crashes occurred during the early morning 

hours (5 to 8 a.m.) and the night hours (6 p.m. to 

midnight). In a study of WVCs (ungulates) from 

Lithuania between 2002 and 2017, Kucas and 

Balčiauskas (2020) found that most took place be-

fore or during sunrise and after or during sunset. In 

a review of literature/studies associated with deer-

traffic collisions on roads and railways, Steiner et al. 

(2014), using cluster analysis, summarized that, de-

spite some seasonal dissimilarity, diurnal patterns 

exist with pronounced peaks during the hours of 

dusk and dawn. 

 

2.1.2. Day-of-week, season, etc. 

Kucas and Balčiauskas (2020) found peak WVC 

levels early in the morning and late in the evening 

during the spring season, and late mornings and 

early evenings during the winter season. Nationally, 

and based on several years of data, the State Farm 

Insurance Company website reports the most dan-

gerous months for animal collisions are November, 

October and December, in this order (Ortega, 2022). 

More recently in 2020, according to the IIHS, the 

highest number of deaths in collisions with animals 

occurred during July-September (IIHS, 2022). We 

should note that these reports are based on national 

aggregates of all states, and seasonal trends could be 

more regionally nuanced. Garriga et al. (2017) stud-

ied WVCs from the Iberian Peninsula and found 

that, overall, roadkill pattern was seasonal with 

peaks in autumn and spring. In a study of WVCs in-

volving Moose in Newfoundland (Canada), Joyce 

and Mahoney (2001) found the vast majority of ac-

cidents occurring between June and October. Ger-

mane to this analysis, Cherry et al. (2019) found that 

the highest counts of WVCs were reported during 

fall for the northeast region of the US. Dussault et al. 

(2006) studied moose accidents between 1990 and 

2002 and found the highest number of accidents in 

late June, but accident frequency remained relatively 

high from mid-May to late August. The previously 

mentioned work of Wilkins et al. (2019) identified 

that Texans are significantly more likely to collide 

with a wild animal during the months of October, 

November, and December. Using an additive model 

and citizen science data collected from urbanized re-

gions of Italy, Valerio et al. (2021) found significant 

peaks in roadkill occurrence (for a variety of spe-

cies) between the winter and spring months. Using 

Polish railway data from 2012 to 2015 and general-

ized additive mixed models, Krauze-Gryz et al. 

(2017) found that the number of wildlife-train colli-

sions varied depending on time of year with most 

collisions occurring in autumn when animals form 

winter herds and migrate.  

 

2.1.3. Roadway/spatial/local features 

In a cluster analysis of deer and boar accidents on 

Czech roads, Bil et al. (2019) found closed habitats, 

the presence of shrubs along roads, road width, and 

the distance to forests to be significant indicators of 

WVC hotspots. Similarly, Bartonicka et al. (2018) 

applied a kernel density estimation method to iden-

tify hotspots among WVCs. Using data from the 

Czech Republic collected between 2006 and 2011, 

the method identified local clusters associated with 

distance from forest and linear vegetation. Based on 

deer population data from the Iowa Department of 

Natural Resources, Gkritza et al. (2010) found that 

the frequency of deer-vehicle crashes in urban deer 

management zones is higher in zones with higher 

deer density, with the exception of zones with a 

higher percentage of land within the city limits. This, 

according to the authors, is likely identifying an ef-

fect of human settlement on deer habitats. The pre-

viously mentioned work of Wilkins et al. (2019) 

identified that most WVCs in Texas occur at night 

in unlit locations, usually on rural roads with very 

low traffic volumes. Using deer accident data col-

lected from Irish mortorways, Liu et al. (2018) used 

logistic regression to find that WVCs were more 

likely to occur on road segments where the distance 

to the nearest forest on the west side of the road was 

greater. Using a threshold analysis, the previously 

mentioned Valerio et al. (2012) identified the rela-

tive roadkill abundance increased mostly in land-

scapes with anthropogenic land cover classes, such 

as complex cultivations, orchards, or urban surfaces. 

 

2.1.4. Weather  

Using a logistic regression model and two years of 

roadkill data from Brazil, Ascensao et al. (2019) 

found that both temperature and precipitation had 

significant effects on accident occurrence, but the 
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exact nature of these effects was dependent on ani-

mal species. Machado et al. (2015), using roadkill 

data collected over a 6-month from Brazilian road-

ways, found that the highest number of roadkill oc-

curring during the wet, rainy season. In their study 

of moose accidents, Dussault et al. (2006) found that 

the probability of a WVC increased when air tem-

perature and atmospheric pressure were high. Olsen 

et al. (2015) investigated the effect of winter condi-

tions (precipitation and snow depth) on DVC rates. 

The authors found that deer populations in the 

Rocky Mountains were typically found further from 

roads and crossed high volume roads less often when 

snow depths were lower, thus resulting in lower 

DVC rates. 

 

2.2. Models for Accident Severity (non-WVCs) 

To date, there are numerous, fine works that investi-

gating accident severity associated with roadway 

collisions. These works use a variety of methodolo-

gies, and we mention several here to highlight the 

diversity of these analyses. Using an ordered probit 

models and accident data from roadways, intersec-

tions, and toll plazas in Florida, Abdel-Aty (2003) 

identified the significance of driver's age, gender, 

seatbelt use, point of impact, speed, and vehicle type 

on the injury severity. Zhang et al. (2021) used a hi-

erarchical ordered probit model (HOPIT) to study 

driver injury severity in left-turn crash data collected 

in Utah between 2010 and 2017. Although results 

vary between season and type of accident, they 

found that factors like snowfall, drug use, high speed 

limits, position of turn signal, nighttime conditions, 

and head-on collisions are associated with increases 

in injury severity. Huang et al. (2008) studied multi-

vehicle crash data from Singapore using Bayesian 

hierarchical binomial logit models with random ef-

fects to account for unobserved factors. They found 

that crashes occurring in peak time with good light-

ing and those involving pedestrian injuries tend to be 

less severe, while crashes that occurring during the 

night (under certain other conditions as well) tend to 

be more severe. Eluru et al. (2010) use a copula-

based methodology to model injury severity for 

crashes that involve any number of occupants. The 

approach was applied to crash data from the 2007 

General Estimates System in the United States and 

results identified inter-occupant dependency in 

some types of vehicles and how crash characteris-

tics, environmental factors, and roadway attributes 

affect the injury severity levels of occupants in dif-

ferent seat positions.  In a study that considered the 

combined effects of seatbelt usage, fixed objects, 

and environmental conditions, Yamamoto et al. 

(2008) provided evidence that sequential binary pro-

bit models outperform the ordered-response probit 

models. Malyshkina and Mannering (2009) used a 

Markov switching model in which accident-severity 

outcomes are generated by separate multinomial 

logit processes. Tested on Indiana roads, the meth-

odology proved superior to standard multinomial 

logit models for a number of roadway classes and 

accident types. Abdelwahab and Abdel-Aty (2001) 

used neural networks to identify the relationship be-

tween several factors and driver injury severity. Us-

ing accident data from Florida, and a validation pro-

cedure, they found the multi-layer perceptron more 

accurate than the ordered logit model. Using 2001 

accident data from Taipei, Chang and Wang (2006) 

explored a classification and regression tree (CART) 

approach, a type of data mining, to establish the re-

lationship between injury severity and driver/vehicle 

characteristics, highway/environmental variables, 

and accident variables.  

While these works above relate to accident severity, 

none relates specifically to isolated WVCs. There 

are, however, some works in the literature that re-

lated to WVC severity.  

 

2.3. Models for accident severity among WVCs 

Based on deer population data from Iowa, Gkritza et 

al. (2010) used a binary logistic regression model to 

identify the factors associated with accident sever-

ity. In their case, a crash was deemed ‘not severe’ if 

there was property damage only and ‘severe’ if there 

was a possible, minor, major, or fatal injury. They 

found that crashes on dark roads, dry roads, principal 

arterials, those with posted speed limit over 55 miles 

per hour, and those in zones with a larger percentage 

of cropland were more likely to result in injury. On 

the other hand, they found that accidents on roads 

with lower speed limits (below 55), gravel right 

shoulders, and undivided with wider left shoulders; 

occurring on Fridays; on roads with a gravel right 

shoulder and higher traffic volume; and in zones 

with a higher percentage of roads were less likely to 

result in injury. Using more than 10,000 WVCs oc-

curring in the province of Saskatchewan (Canada), 

Gharraie and Sacchi (2020) investigated the severity 

outcomes of WVCs and their influencing factors via 
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a structural equation modeling (SEM) with general-

ized (ordered probit) links. They found that speeding 

attitude and visibility impairment as latent variables 

positively influenced the overall crash severity, and 

road surface and weather conditions can indirectly 

affect crash severity. In an analysis aimed at identi-

fying factors associated with driver injury severity, 

and to account for unobserved heterogeneity in the 

data, Al-Bdairi et al. (2020) used a mixed logit 

model, a mixed logit model with heterogeneity in 

means, and a mixed logit model with heterogeneity 

in means and variances. Based on animal accidents 

occurring in Washington between 2012 and 2016, 

they found an increased likelihood of severity asso-

ciated with freeways/expressways, daylight condi-

tions, early morning times, dry road surfaces, and 

clear weather conditions. Based on 12,000 single-

vehicle AVCs from the state of Arizona, Russo 

(2017) investigated the factors affecting injury se-

verity via an ordered logit statistical model with ran-

dom parameters to account for unobserved heteroge-

neity. Among the several driver-, vehicle-, and envi-

ronmental-related variables found to be significantly 

associated with injury severity, AVCs involving 

livestock or pets were more likely to result in severe 

injury. 

 

3. Material and Methods 

3.1. Data  

3.1.1. Initial data preparation 

Initially, two vehicular collision datasets were made 

available to us: the 2002-2017 IDMS and the 2017-

2019 VISION data, both curated by the New Hamp-

shire Department of Safety (NHDOS) and shared 

with the NH Department of Transportation 

(NHDOT). Both, essentially, are detailed records for 

auto accidents occurring in the state of New Hamp-

shire. From 2002-2017, the IDMS was the official 

data recording platform, but NH state offices transi-

tioned to the VISION platform during 2017. There 

were 444 duplicate values for 2017, the year of the 

transition, and we retained only the VISION records 

for this year. The combined dataset from 2002-2019 

contained a total of 605,390 accident records occur-

ring across the state. The dataset included infor-

mation pertaining to the street, time-of-day, day-of-

the-week, month-of-the-year, severity of the colli-

sions, number of vehicles involved, number of hu-

mans injured, road design, road alignment, weather 

conditions, light conditions, and the crash type. The 

crash type field was used to exclude non-WVC rec-

ords as we focus on WVCs in this work. Unfortu-

nately, nearly all WVCs were recorded as ‘Animal 

(Other),’ so type of animal (bear, deer, moose, etc.) 

could not be reliably distinguished. In the end, there 

were 27,383 WVCs recorded by the state between 

2002 and 2019. Also, the IDMS data (2002-2016) 

and the VISION data (2017-2019) were slightly dif-

ferent in terms of attribute names and, occasionally, 

data format. For such cases, we deferred to the at-

tribute name and format used in the most recent plat-

form, the VISION data (2017-2019). 

 

3.1.2. Spatial analysis 

During meetings with regional planners that use the 

NH collision dataset, we learned that the collision 

data included information that were not spatially ex-

plicit. Specifically, some records completely omit-

ted latitude/longitude information, while others used 

lat./long. centroids corresponding to municipality 

centers. Given the project goals, we decided to re-

move records that did not closely correspond to ac-

tual roadways (within 200ft). Identifying such loca-

tions was done via ArcMap 10.8.1 and ArcGIS Pro 

2.9 using the NH DOT 2021 roadways data layer 

(herein referred to as “NH Roads”) as a reference. 

 

3.1.3. Roadway characteristics 

The WVC dataset, at this point, did not include de-

tailed characteristics of the roadways. To resolve 

this, we used ArcMap 10.8.1 to spatially join the 

WVC points to the NH Roads GIS layer. This then 

linked each WVC with additional roadway infor-

mation such as AADT, number of lanes, road width, 

shoulder width, functional system tier, road surface 

(paved/unpaved), and direction. The NH Roads GIS 

layer does not include posted speed limit, so we used 

the functional system to identify this attribute. 

AADT data was not available for all roadways in-

cluded in the NH Roads layer, so we appended NH 

Roads with AADT data stored in prior NH roads lay-

ers. 

 

3.1.4. Wildlife, human, and road density 

Using 2020 data estimates from the NH Department 

of Fish and Game, we integrated regional deer, bear, 

and moose populations for each WVC. Deer and 

moose were chosen as they are believed to be the 

animals most closely associated with severe acci-

dents in the state. Next, to complement the wildlife 
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population densities, we calculated road density us-

ing the Kernel Density approach in ArcMap 10.8.1 

and then extracting these values for WVC locations. 

Lastly, human population density was calculated us-

ing Block Group population data from the 2015-19 

American Community Survey (Census Bureau) and 

dividing this value by the land area of the Block 

Group geographic area. This data was spatially 

joined to the WVC locations in ArcMap 10.8.1. 

 

3.1.5. Final dataset 

Since our goal is to identify the factors associated 

with severe WVCs, we first need to identify a sever-

ity variable, or in this case, a binary variable distin-

guishing WVCs that result in serious injury to the 

driver from those that do not. From the aggregated 

dataset (described in previous sections), we have 

‘Severity’ information collected at the scene of each 

WVC. This variable is categorical and distinguishes 

between ‘fatal,’ ‘incapacitating,’ ‘non-incapacitat-

ing,’ ‘minor,’ and ‘serious’ injuries to the driver. We 

defined a new binary variable called ‘severity,’ and 

any record originally categorized as ‘fatal,’ ‘inca-

pacitating,’ and ‘serious,’ was given the ‘severe’ 

designation. All other records, those associated with 

minor or no injury, were assigned the ‘not severe’ 

designation. This new variable, severity, will be our 

binary response for our statistical model to be de-

scribed in subsequent sections. In Al-Bdairi et al. 

(2020), despite using three categories for their or-

dered response, ‘severe’ accidents mirrored our def-

inition. In that work, the authors defined severe in-

juries as either incapacitating or fatal. In their sever-

ity analysis of deer accidents, Gkritza et al. (2010) 

used a binary response with two discrete outcomes, 

injury or no-injury. Their ‘injury’ category included 

minor injuries, however, so their response is less of 

a severity distinction and more of a distinction be-

tween injury and property damage only.  

In our final dataset used for this analysis, we ob-

served 349 severe WVCs, a relatively low number 

compared to the non-severe accidents. We did ini-

tially pursue zero-inflated and Firth-correction mod-

els to address this relative scarcity, but we found no 

substantial change using these remedial models. 

Thus, we pursued the model form described in the 

following sections. We acknowledge, however, that 

fitted coefficients may be deflated due to the relative 

rarity of outcomes. 

Motivated by the current literature (research identi-

fying the factors associated with WVC frequency 

and severity), the objectives of our project, and the 

limitations of the data available to us, several varia-

bles were considered for our analysis. The table be-

low (Table 1) presents these variables, a short de-

scription of each, and simple summary statistics. We 

note that to simplify the procedure and for ease of 

interpretation of future results, many categorical 

variables were discretized into broad categories or 

converted into binary variables (yes/no). This is a 

relatively common approach. For example, Gharraie 

and Sacchi (2020) discretized road type, accident 

type, time-of-day, day-of-the-week, road surface, 

lighting, weather, and road alignment into binary 

variables. Similarly, Malin et al. (2019) discretized 

categories of weather conditions in their investiga-

tion of the effects of weather on accident risk.  

As a final preprocessing step, we ‘cleansed’ the data 

by scanning for missing or unusual/suspicious en-

tries. Most commonly, accident records were miss-

ing information related to accident severity, posted 

speed limit, or AADT. These entries were discarded 

and we were left with a dataset of 15,234 WVC rec-

ords, each complete with information for the varia-

bles listed above and accident severity. This dataset 

will be used for the model-fitting procedure de-

scribed below. 

 

3.2. Logistic Regression Model 

For our statistical model, we opted for a multiple lo-

gistic regression form. Such a model, of course, re-

quires a binary response, and we define our binary 

response 𝑦 in the following way. 

 

𝑦 = {
1 if the 𝑊𝑉𝐶 is severe
0

    
if the 𝑊𝑉𝐶 is not severe

  (1) 

 

where ‘severe’ is previously defined. 

For 𝑀 predictor variables, we assume a vector-val-

ued input 𝒙 = (1, 𝑥1, 𝑥2, … , 𝑥𝑀)  and vector of re-

gression coefficients 𝜷 = (𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑀) . We 

define 𝜋 as the probability of our response taking on 

a value of ‘1’, the probability of a WVC being se-

vere, as follows. 

 

𝑃(𝑦 = 1| 𝒙, 𝜷) = 𝜋 (2) 

 

We note that the probability depends on our predic-

tors and coefficients. 
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Table 1. List of variables used in procedure. First column gives variable name, second column gives type of 

variable, and third column gives units for continuous variables or categories of categorical variable 
Variable Type Description/units 

Weather Categorical  
(2 categories) 

Rain – inclement conditions including rain, snow, fog, sleet, etc. 
Clear – clear conditions 

Light Categorical  

(2 categories) 

Light – daylight conditions 

Dark – nighttime conditions 

Surface Categorical  
(2 categories) 

Slick – slippery roadway  
Dry – not slippery roadway 

Direction Categorical  

(2 categories) 

One-way - one-way traffic  

Two-way – two-way traffic  

Shoulder Width Numerical Measured in feet 

Habitat Block Categorical  

(2 categories) 

Yes – within 500ft of a priority wildlife habitat 

block 

No – not within 500ft of block 

Primary corridor Categorical  
(2 categories) 

Yes – within 500ft of a primary wildlife corridor 
No – not within 500ft of corridor 

Secondary corridor Categorical  

(2 categories) 

Yes – within 500ft of a secondary wildlife corridor 

No – not within 500ft of corridor  

Highway Categorical  
(2 categories) 

Yes – accident occurred on I-93 or I-89 (NH’s two major interstates) 
No – accident occurred on non-interstate roadway 

Alignment Categorical  

(2 categories) 

Straight – no substantial curvature, incline, or decline.  

Curve – substantial curve, incline, or decline. 

Paved Categorical  

(2 categories) 

Paved – roadway paved 

Not paved – roadway not paved 

Season Categorical  

(2 categories) 

Winter/Fall – Sept., Oct., Nov., Dec., Jan., Feb. 

Spring/Summer – Mar., Apr., May, Jun., Jul., Aug. 

Posted Speed Limit Numerical  Measured in miles per hour (MPH) 

Roadway Density Numerical Measured in roads per square mile.  

Population Density Numerical Measured in persons per square mile 

Deer Density Numerical  Measured in deer per square mile 

AADT (Average annual daily traffic) Numerical  Average 24-hour traffic volume 

Year Numerical  Year in which accident occurred  

Day-of-the-week Categorical  

(7 categories) 

Sun., Mon., Tues., Wed., Thurs., Fri. 

Time-of-day (hour) Numerical  Hour in which accident occurred 

 

Next, we consider the logit of 𝜋, defined as follows. 

 

𝑙𝑜𝑔𝑖𝑡(𝜋) = log (
𝜋

1 − 𝜋
) (3) 

 

where the quantity 
𝜋

1−𝜋
 is known as the ‘odds.’ Thus, 

we have: 

 

𝑙𝑜𝑔𝑖𝑡(𝜋) = log (
𝜋

1 − 𝜋
) = log(𝑜𝑑𝑑𝑠) (4) 

 

By setting the logit (the log-odds) equal to a linear 

combination of predictor values and coefficients, we 

have the logistic regression equation: 

𝑙𝑜𝑔𝑖𝑡(𝜋) = log(odds) = log (
𝜋

1−𝜋
) =

∑ 𝛽𝑚𝑥𝑚
𝑀
𝑚=0 , 

(5) 

 

or in its common vector form 

 

log(odds) = log (
𝜋

1−𝜋
) = 𝜷 ∙ 𝒙  (6) 

 

where 𝜷 and 𝒙 are defined as above and (∙) repre-

sents the vector dot product. We note that the log-

odds is now dependent on the combination of varia-

bles and coefficients and 𝜋  is guaranteed to be ∈
(0, 1). For a somewhat simpler, and possibly more 

intuitive interpretation of the model, equation (6) is 
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often expressed in terms of the odds by exponentia-

tion. This yields 

 

odds =
𝜋

1−𝜋
= exp{𝜷 ∙ 𝒙}  (7) 

 

We can also rewrite (2) as follows. 

 

odds =
𝜋

1 − 𝜋
= exp{𝜷 ∙ 𝒙} 

= exp {𝛽0 + ∑ 𝛽𝑚𝑥𝑚

𝑀

𝑚=1

} 

= exp{𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑚𝑥𝑚} 

=  exp{𝛽0} ∗ exp{𝛽1𝑥1} ∗. . .∗ exp{𝛽𝑚𝑥𝑚} 

(8) 

 

From the last line of (8), we can see that a one-unit 

change in the 𝑚𝑡ℎ predictor, while holding all other 

variables constant, will result in an exp{𝛽𝑚} multi-

plicative change in the odds. 

 

3.3. Additive terms 

A generalized additive model (GAM), introduced by 

Hastie and Tibshirani (1986, 1990), is a generalized 

model (for example, a binary logistic regression 

model) with a linear predictor involving a sum of 

smooth functions of some number of explanatory 

variables. Furthermore, a model form can be hybrid 

in the sense that our link function (the left side of our 

model equation, the log-odds) can be set equal to a 

combination of both linear terms and smooth func-

tions of variables. That is, we may have the follow-

ing. 

 

log (
𝜋

1−𝜋
) = 𝛽0 + ∑ 𝛽𝑝𝑥𝑝 +𝑃

𝑝=1 ∑ 𝑓𝑞(𝑥𝑞)
𝑄
𝑞=1   (9) 

 

where ∑ 𝛽𝑝𝑥𝑝
𝑃
𝑝=1  are the 𝑃  linear terms in the 

model, ∑ 𝑓𝑞(𝑥𝑞)
𝑄
𝑞=1  are the 𝑄  smooth functions of 

𝑄 variables (the additive terms), and 𝑀 = 𝑃 + 𝑄 (𝑀 

total predictor variables).  

The smooth functions of this model form allow for a 

flexible specification of the dependence between the 

response (the log-odds) and the corresponding ex-

planatory variables. To create these smooth func-

tions, statistical software automatically “plots” the 

response versus an independent variable, and then 

fits a smooth curve that represents the data as well 

as possible. This fit is achieved by dividing the data 

into a number of sections, assigning "knots" to the 

ends of the sections, and fitting a polynomial or 

spline function to the data in the section. The result-

ing functions can be high-order curves that capture 

complicated relationships between the response and 

the explanatory variable. Although GAMs are flexi-

ble and often provide better results in terms of good-

ness-of-fit, their primary shortcoming is that their re-

sults are difficult to interpret. That is, the fitted 

model result is not reported in terms of a parametric 

equation, and model fits are typically evaluated 

graphically.   

For this analysis, we opted to use the hybrid gener-

alized additive model (given in equation (9)) as our 

final model form. We also note that in our statistical 

model, we pursue several interactions between ex-

planatory variables. 

 

4. Results and Discussion 

All data preparation/manipulation/aggregation was 

performed using the base packages of R statistical 

software (R Core Team, 2022). The model form pur-

sued in this analysis was a hybrid GAM, the model 

form presented in equation (9). This model uses se-

verity as the binary outcome (response) and a variety 

of explanatory variables included as linear or addi-

tive terms. To fit this particular model, we used the 

“mgcv” package based on the code of Simon N. 

Wood (Wood, 2011). 

A challenge with our model form is determining 

which of the terms should be considered linear and 

which should be considered additive. Initially, all 

numerical variables were designated as additive 

terms. From investigatory, initial model-fitting, spe-

cifically looking at the estimated smooths associated 

with the numerical variables, we were able to deter-

mine (graphically) which terms, in fact, should re-

main additive and which should simply be linear 

terms. In the end, time-of-day, posted speed limit, 

and human population density required high-order 

smooths (to be presented and interpreted in subse-

quent section). 

The remaining categorical variables were included 

in our model as linear terms. Also, as previously 

mentioned, in addition to main effects, several two-

way interactions were investigated. In fact, during 

the model-fitting procedure, most combinations of 

the categorical variables (see Table 1) were pursued. 

While main effects help to gain a very general un-

derstanding of the effect of a variable, the interac-

tions will potentially reveal more complicated, nu-

anced features not necessarily discernable in the 



Laflamme, E.M., Villamagna, A., Kim, H.J., 

Archives of Transport, 69(1), 39-57, 2024 

47 

 

 

main effects alone, and these complicated relation-

ships are most interesting. Though they worked 

more generally with accident prediction models, Is-

lam et al. (2014) highlighted the importance of in-

corporating interactions between variables for the 

estimation of models. 

Lastly, the overall fit and appropriateness of the 

model form was assessed via a Hosmer-Lemeshow 

test, a commonly used technique for assessing lo-

gistic regression models (Hosmer and Lemeshow, 

2000). The Hosmer-Lemeshow test creates groups 

of observations based on estimated probabilities 

from the logistic regression model and then com-

pares observed and expected probabilities within 

these groups. This test, however, can become too 

powerful with large sample sizes, and the number of 

groups chosen should be adjusted to keep the power 

of the test consistent (Paul et al., 2013). Following 

the advice of Paul et al. (2013), and based on our 

sample size and number of successes (severe acci-

dents), we chose to use 100 groups. The Hosmer-

Lemeshow goodness-of-fit test yielded a test statis-

tic of Χ2 = 105.32 (df = 98, p-value = 0.2885). This 

gives no evidence of a lack of fit and we can assume 

our model is appropriately specified. 

 

4.1. Linear terms 

Related to the linear terms in the model, fitted results 

were generally positive as a number of statistically 

significant explanatory variables were identified. In 

other words, a number of beta coefficients associ-

ated with the linear terms in our model form (equa-

tion (9)), were found to be statistically different from 

zero based on a p-value analysis and a significance 

level of 0.05. However, because of our large sample 

size (𝑛 > 15,000), we suspect our p-values may be 

artificially deflated and should thus be looked upon 

with some skepticism. So, instead of reporting and 

interpreting statistically significant terms (based 

only on p-values), we have opted to report and inter-

pret ‘practically’ significant terms based on effect 

sizes. In the case of logistic models, “odds ratios” 

are considered suitable effect sizes. Odds ratios are 

the exponentiated beta terms in our model identified 

in equation (8), and these values are interpreted as 

the relative multiplicative effects of the variables on 

the odds. While there are different opinions as to 

what should be considered a “large” effects size, 

many suggest that “rules of thumb” should be 

avoided and that effect sizes should be “contextual-

ized,” interpreted in terms of the field of study and 

phenomenon being measured (for example, Ialongo, 

2016). Following this advice, and albeit an arbitrary 

threshold, we have decided to use odds ratios of (or 

around) 0.50 and 2 as boundaries for practical sig-

nificance (or, equivalently, coefficient estimates of -

0.69 and 0.69, respectively). That is, any odds ratio 

resulting in a value greater than 2 or less than 0.50 

(doubling or halving the odds, respectively) is con-

sidered practically significant. Note that for practi-

cally significant interaction terms, the main effects 

will not be discussed, regardless of their signifi-

cance, since they should not be interpreted on their 

own. Lastly, since our model does identify several 

practically/statistically significant terms, we will 

discuss those deemed “most” significant and inter-

esting/germane to our analysis. Table 2 below pre-

sents a selection of practically significant variables, 

their corresponding regression estimates, and their 

odds ratios. 

 

4.1.1. Weather and surface interaction 

The relevant fitted result for these variables is as fol-

lows. 

 

𝑜𝑑𝑑𝑠 = exp{… − .25 ∗ 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 − 2.08 ∗
𝑆𝑢𝑟𝑓𝑎𝑐𝑒 + 2.28 ∗ 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 ∗ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 + ⋯ }  

(10) 

 

Both weather and surface are categorical variables 

with just two categories each: rain, clear weather; 

slick, dry surface; respectively. For such variables in 

regression, there is always a base case (or baseline 

setting), and the other level of the variable is an ad-

justment to that baseline. For these particular varia-

bles, clear weather and dry surfaces are the bases, 

and the main effects would be the multiplicative ad-

justments to the odds of severity for inclement and 

slick conditions, respectively. However, since we 

have a practically/statistically significant interaction 

between weather and surface, we can no longer in-

terpret the main effects since these variables now de-

pend on the each other. The good news is that these 

variables are binary (take on values of 0 and 1 for 

the two respective categories), so interpretation of 

the model results is relatively straightforward and 

understandable.  
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Table 2. A selection of practically significant variables and their corresponding regression coefficients (with 

confidence intervals) and odds ratios (with confidence intervals). Note that the highway variable is 

weakly practically significant 
Variable �̂� with 95% C.I. 𝐞𝐱𝐩{�̂�} with 95% C.I. 

Weather * Surface 2.28 (0.48, 4.09) 9.81 (1.61, 59.75) 

Direction * Spring/Summer 0.93 (0.40, 1.46) 2.53 (1.49, 4.29) 

Align * Spring/Summer -0.81 (-1.47, -0.14) 0.45 (0.23, 0.87) 

Highway -0.65 (-1.18, -0.11) 0.52(0.31, 0.90) 

 

First, for the base cases, for both clear weather con-

ditions and dry surface conditions (when both 

weather and surface are set to zero), we have, of 

course, an odds of exp{−.25 ∗ 0 − 2.08 ∗ 0 +
2.28 ∗ 0 ∗ 0} = exp{0} = 1. For clear weather con-

ditions (keeping weather at 0, the base case), we find 

that slick surfaces (setting surface equal to 1) corre-

sponds to an odds of exp{−.25 ∗ 0 − 2.08 ∗ 1 +
2.28 ∗ 0 ∗ 1} = exp{−2.08} = 0.12. If we compare 

this to the odds for the base cases, we have 
exp{−.25∗0−2.08∗1+2.28∗0∗1}

exp{−.25∗0−2.08∗0+2.28∗0∗0}
=

0.12

1
= 0.12 . Thus, for 

clear weather, slick surface affects the odds of hav-

ing a severe accident by a multiplicative factor of 

0.12; or in other words, for clear weather, there is 

about an 88% decrease in the odds of severity for 

slick surfaces compared to dry surfaces. This result 

has some support in the literature. Al-Bdairi et al. 

(2020) found an increased likelihood of severity as-

sociated with dry road surfaces (and decreased like-

lihood of severity for slick roadways) and clear 

weather conditions. Also, indirectly, Gharraie and 

Sacchi (2020), found a decrease of crash severity for 

wet road surface conditions, likely because of a de-

creased speeding attitude (which makes intuitive 

sense).  

Next, we observe the effect of slick surfaces for in-

clement weather conditions to see the interaction ef-

fect, or how the effect of slick surfaces depends on 

the observed weather. For inclement weather (set-

ting weather to 1), we find that slick surfaces (setting 

surface equal to 1) corresponds to an odds of 

exp{−.25 ∗ 1 − 2.08 ∗ 1 + 2.28 ∗ 1 ∗ 1} = .95 . If 

we compare this to the odds for inclement weather 

and dry surfaces, we have 
exp{−.25∗1−2.08∗1+2.28∗1∗1}

exp{−.25∗1−2.08∗0+2.28∗1∗0}
=

0.95

0.78
= 1.22 . Thus, for 

inclement weather, slick surfaces affect the odds of 

having a severe accident by a multiplicative factor 

of 1.22; or in other words, for inclement weather, 

there is about an a 22% increase in the odds of se-

verity for slick surfaces compared to dry surfaces. 

So, the combination of slick surfaces and inclement 

weather results in an increase in the odds of a severe 

accident. 

 

4.1.2. Direction and season 

The relevant fitted result for these variables is as fol-

lows. 

 

𝑜𝑑𝑑𝑠 = exp{… 0.28 ∗ 𝑆𝑒𝑎𝑠𝑜𝑛 − 1.65 ∗
𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + 0.93 ∗ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝑆𝑒𝑎𝑠𝑜𝑛 +
⋯ }  

(11) 

 

Both direction and season are categorical variables 

with just two categories each: one-way, two-way 

traffic; sping/summer, fall/winter; respectively. For 

these variables, the fall/winter season and one-way 

traffic are the base cases, so the spring/summer sea-

son and two-way traffic are adjustments to their re-

spective bases. Initially, we did consider four sepa-

rate seasons, but found no significant differences be-

tween winter and fall and between spring and sum-

mer. Thus, the variable was discretized to distin-

guish between fall/winter and spring/summer.   

For the fall/winter season (keeping season at 0), we 

find that two-way traffic (setting direction equal to 

1) corresponds to an odds of exp{0.28 ∗ 0 − 1.65 ∗
1 + 0.93 ∗ 1 ∗ 0} = exp{−1.65} = 0.19. Thus, for 

cooler months, two-way traffic affects the odds of 

having a severe accident by a multiplicative factor 

of 0.19, or there is about an 81% decrease in the odds 

of severity. Next, we observe the interaction effect. 

For spring/summer (setting season to 1), we find that 

two-way traffic (setting direction equal to 1) corre-

sponds to an odds of exp{0.28 ∗ 1 − 1.65 ∗ 1 +
0.93 ∗ 1 ∗ 1} = .64. If we compare this to the odds 

for two-way traffic in the fall/winter, we have 
exp{0.28∗1−1.65∗1+0.93∗1∗1} 

exp{0.28∗0−1.65∗1+0.93∗1∗0} 
=

0.64

0.19
= 3.37. Thus, for 

spring/summer (as compared to the fall/winter), 

two-way traffic increases the odds of having a severe 

accident by a multiplicative factor of 3.37, more than 

a 3-fold increase. This is an interesting result: during 
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the cooler months, two-way traffic is safer than one-

way traffic; during the warmer months, two-way 

traffic is much more dangerous. At the time of this 

analysis, no literature was found related to the com-

bined effect of traffic direction and season. This ef-

fect may be attributable to changes in driver attitude 

(speeding, etc.) and increased animal behavior/ac-

tivity during the warmer months. 

 

4.1.3. Alignment and season interaction 

The relevant fitted result for these variables is as fol-

lows. 

 

𝑜𝑑𝑑𝑠 = exp{… + 0.30 ∗ 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡  
+0.28 ∗ 𝑆𝑝𝑟𝑖𝑛𝑔/𝑆𝑢𝑚𝑚𝑒𝑟 

−0.81 ∗ 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ∗ 𝑆𝑝𝑟𝑖𝑛𝑔/𝑆𝑢𝑚𝑚𝑒𝑟 

+ ⋯ } 

(11) 

 

In this case, alignment and season are both categor-

ical variables, each with only two categories: 

straight, curved/inclined roads; fall/winter, 

spring/summer; respectively. Therefore, as we see 

above in the equation excerpt, there is one adjust-

ment for the alignment (one adjustment from curva-

ture/incline, the base case), one adjustment for the 

season (adjustment from the winter/fall base case), 

and a single interaction term.  

First, as a reference, for the fall/winter season (when 

seasonal adjustment is set to 0), we find that straight 

roadways (setting alignment equal to 1) affects the 

odds of having a severe accident by a multiplicative 

factor of exp{0.30 ∗ 1} = 1.35 . This means that, 

during the fall/winter, there is about a 35% increase 

in the odds of severity for straight roadways com-

pared to roadways with curvature or incline/decline. 

Now, we consider the spring/summer season, and 

we compare our result to that of the fall/winter. In 

the spring/summer (with seasonal adjustment set to 

1), we find that straight roadways (setting alignment 

equal to 1) have an odds of exp{0.30 ∗ 1 + 0.28 ∗
1 − 0.81 ∗ 1 ∗ 1} = 0.79. If we compare these odds 

to the those associated with straight roadways in the 

fall/winter, we have 
 exp{0.30∗1+0.28∗1−0.81∗1∗1}

exp{0.30∗1}
=

0.79

1.35
= 0.58 . Thus, during the spring/summer, as 

compared to fall/winter, there is about a 42% de-

crease in the odds of severity for straight roadways 

compared to roadways with curvature or incline/de-

cline.  

It is worth summarizing this result very generally: 

compared to curved roads or those with steep in-

clines/declines, straight roads are safer in the 

warmer months. There is ample support in the liter-

ature that curved sections of roadway observe a dis-

proportionate number of severe accidents (for exam-

ple, Radimsky, 2016), or that WVCs occur more fre-

quently in curvy sections of road (for example, Jaku-

bas et al., 2018), but to our knowledge, no works 

have quantified the effect of alignment/curvature by 

season. 
 

4.1.4. Interstate highways 

The relevant fitted result for this variable is as fol-

lows. 

 

𝑜𝑑𝑑𝑠 = exp{… − 0.65 ∗ ℎ𝑖𝑔ℎ𝑤𝑎𝑦 + ⋯ } (12) 

 

In this case, the highway variable is a categorical 

variable and simply distinguishes between interstate 

highways (I-93 and I-89 in NH) and all other roads. 

Despite pursuing numerous interactions with this 

variable, no meaningful relationships were identi-

fied. Interestingly, two-way interactions between 

highway and habitat variables (habitat block, pri-

mary corridor, and secondary corridor) were not 

found to be significant. This was somewhat unex-

pected as numerous studies have identified that 

WVCs often peak where roads interact with animal 

habitats (for example, Ha and Shilling, 2018). None 

of the other variables in the analysis were found to 

interact with highway either, so we interpret the ef-

fect of highway as a main effect. In our case, non-

highway roads are (by default) the base case, so the 

effect of being on NH’s interstates on accident se-

verity is given by exp{−0.65} = 0.52. That is, be-

ing on an interstate highway affects the odds of hav-

ing a severe accident by a multiplicative factor of 

0.52, or there is about a 48% decrease in the odds of 

severity for highways.   

Though initially unexpected, this result does make 

sense. Based on national crash data, Huijser et al. 

(2008) found that WVCs are more likely to occur on 

low volume roads with nearly half of all observed 

WVCs occurring on roadways with less than 5,000 

average daily traffic (ADT). In addition to this, in-

terstates tend to be better maintained, have wider 

lanes, have more space between vehicles, and have 
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isolated paths of travel, so generally, WVCs occur-

ring on highways can be ‘managed’ to avoid severe 

injury. 
 

4.2. Additive terms  

Using the default setting in the mgcv package, thin 

plate regression splines were used for the smooth 

functions. A useful output from the GAM fitting out-

put is the effective degrees of freedom (edf) for each 

smooth term. An edf of 1 corresponds to a model 

with the smooth term penalized to a simple linear re-

lationship, so the edf can be loosely interpreted as 

the order/complexity of the fitted smooth, or akin to 

the number of knots used. As mentioned previously, 

all continuous variables in our data were originally 

included in the model with smooth terms. However, 

many of the associated smooth functions had edf 

values of 1 (or nearly 1), so their inclusion as addi-

tive terms was not justified. In the end, three varia-

bles; time-of-day, posted speed limit, and human 

population density; had edf > 1 and their correspond-

ing smooth functions were retained in the final 

model. 
 

4.2.1. Time-of-day 

The estimated smooth function associated with day-

of-the-week is included below in Figure 1. The 

smooth function associated with day-of-the-week 

had an edf value around 6 which agrees with the very 

high-order, complicated curve shown below in Fig-

ure1. Using y=0 as a reference point (at y=0 there is 

even odds of a severe accident), we see that the early 

hours, between around midnight and 6AM, there is 

an increase in the odds of a severe accident, with a 

peak around 3AM. Between about 6AM and 5PM, 

we find negative values with a low point around 

8AM. These negative values correspond to de-

creases in the odds of observing a severe accident. 

After 5PM, we see positive values, or increases in 

the odds of a severe accident, with a peak around 

10PM. There is literature to support this finding. In 

their analysis of accident severity among WVCs, Al-

Bdairi et al. (2020) found an increased likelihood of 

severity associated with early morning times, or 

around those times we see our peak values. Though 

not related to severity specifically, Steiner et al. 

(2021) found that the highest number of deer-vehicle 

accidents occurred during nights after dusk, or 

around those times we see in our second peak of pos-

itive values. To test for non-linear temporal proba-

bility of moose-vehicle accidents, Neumann et al. 

(2012) applied a generalized additive model using 

the relative frequency of collisions as a function of 

the interaction of a given week and hour. They found 

that for certain times of the year, the predicted prob-

ability of collisions was highest between 4 and 

10PM, interestingly the same times as the increasing 

portion of our second peak. Based on a very thor-

ough time series analysis of nearly a decade of deer-

related accidents, Hothorn et al. (2015) identified a 

fine-scale temporal pattern of DVCs, and generally 

a trend that showed that DVCs occurred shortly after 

sunset and shortly before sunrise (during the dark 

hours). While that work is based on DVCs only (and 

not severity of the accident), these periods are nearly 

identical to the positive areas, those corresponding 

to increases in odds of severity, on our GAM plot 

below. Huijser et al. (2008) found that most WVCs 

occurred during early morning and late evening 

hours, and many other works cited in section 2.1.1 

agree with our findings. It is worth mentioning that 

the time-of-day effect likely has to do with both an-

imal and traffic behavior (human behavior) that vary 

throughout the day. 

 

 
Fig. 1. Plot of smooth function fit to the time-of-day 

variable 
 

4.2.2. Posted speed limit 

The estimated smooth function associated with day-

of-the-week is included below in Figure 2. The as-

sociated smooth function had an edf value slightly 

above 2 which agrees with the parabolic curve seen 

below. In this case, because the smooth is relatively 
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low-order, interpretation is not very complicated. 

Below, we observe that the effect of posted speed on 

the response (which is the log-odds) increases, flat-

tens, and then decreases with a peak around 50 mph. 

Importantly, speeds between 45 and 60 mph are 

above y=0 (have positive log-odds) and suggest an 

increase in the odds of a severe accident. On the 

other hand, both lower and higher speeds, those be-

low 45 and above 60 mph, are below y=0 and sug-

gest a decrease in the odds of a severe accident. 

While not expected, similar results were found by 

Al-Bdairi et al. (2020), who found that the speed 

limit of 60 mph increases the likelihood of severe 

injuries. In another work, using overall crash data 

collected from England in 2012, and using a multi-

variate Poisson lognormal regression model, Impri-

alou et al. (2016) found a distinct non-linear rela-

tionship between speed limit and severe accidents, 

especially at both low and high volumes (peaks in 

severe accidents around 60 mph with lower frequen-

cies at both lower and higher speeds). Imprialou et 

al. (2016) theorized that improved safety at higher 

speeds, their unexpected result, may be due to in-

creased design standards and longer available dis-

tances between vehicles at these conditions. In a 

work focused specifically on WVCs on a highway 

segment, Murphy and Xia (2016) found a significant 

negative relationship between speed and accident 

occurrence. Lastly, Lave and Elias (1994) contend 

that increases in posted speed limits are safer (fewer 

fatal accidents) due to reductions in speed variances 

on higher speed segments.  

We note that, after reviewing the NH WVC data, 

high speed limits are not found exclusively on inter-

state highways (some smaller state routes had high 

speed sections), and some portions of the interstate 

highways themselves had lower posted speed limits 

(45-55 mph range). This confirms that high speed 

limits are not exclusive to well-designed interstates, 

but occur on a variety of roadways, those with dif-

ferent geometries, varying degrees of protection 

against encroachment from animals, etc. In fact, a 

fine gradient of speed/roadway type combinations 

are represented in our data. Thus, we can then gen-

eralize our result by concluding that the relationship 

between speed and accident severity is non-linear, a 

relationship that may have been overlooked with a 

linear model.   

Although we stand by our result, we can only spec-

ulate as to why high-speed conditions are associated 

with lower severity WVCs. Just as Lave and Elias 

(1994) concluded, it makes logical sense that higher 

speeds are associated with decreased volatility, 

which itself has been shown to decrease the likeli-

hood of severe accidents (see Wali et al., 2020, for 

example); and perhaps this decreased volatility does 

not occur until very high speeds (greater than 60 

mph). As stated by McCarthy (2001), there remains, 

in fact, considerable uncertainty relating to the true 

safety impacts of changing speed limits. Further-

more, according to Mannering (2007), the cause of 

this uncertainty “relates to the difficulty in empiri-

cally controlling the confounding effects of time-

varying changes in factors such as highway enforce-

ment, vehicle miles traveled, vehicle occupancy, 

seat belt usage, alcohol use and driving, vehicle fleet 

mix (proportions of passenger cars, minivans, 

pickup trucks, and sport utility vehicles), vehicle 

safety features, driver expectations, driver adjust-

ment, and adaptation to risk.” 

 

 
Fig. 2. Plot of smooth function fit to the posted speed 

variable 

 

4.2.3. Human population density 

The smooth function associated with human popula-

tion per square mile is given below in Figure 3. This 

smooth had an edf value around 3.4, evident below 

in the non-linear, cubic curve. Between 0 and about 

3,000 (persons per square mile), the curve is below 

zero indicating a negative effect on the odds of se-

verity. The curve is then positive up to a point cor-
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responding to about 9,000, indicating a positive ef-

fect on the odds of severity for these densities. Be-

yond this point, for values larger than 9,000, the 

curve is negative and continues to decrease as the 

density increases. We note, however, the large in-

crease in confidence bands for these larger densities, 

and thus interpret this area of the plot cautiously.  

In summary, we see increased odds of severity at 

mid-range human densities (between around 3,000 

and 9,000) and decreased odds for both low and high 

densities. Intuitively, we can explain this. In lower 

density areas, while there may be more animal activ-

ity, the roadways may be less disposed to severe ac-

cidents (lower speeds, etc.). In highly dense areas, 

there may simply be fewer animals present, or con-

sistent traffic deters/scares off animals. The existing 

literature is split on this issue, and a variety of 

measures are used to quantify density (number of 

roads, artificial lights, etc.). Some studies have indi-

cated that urban roads are associated with fewer 

WVCs (for example, Zuberogoita et al., 2014), 

while others have found the opposite (for example, 

Ha and Shilling, 2018). Gkritza et al. (2010), mod-

eling injury severity associated with WVCs, found 

that both higher traffic volumes and areas higher 

percentages of roads (both proxies for high densi-

ties) were less likely to result in injury. This agrees 

with our result, specifically the upper end of our fig-

ure. 

 

 
Fig. 3. Plot of smooth function fit to the human pop-

ulation density variable 

 

5. Model validation  

To further evaluate the appropriateness of our model 

form, and to assess the predictive capability of our 

model/predictors, we employ a validation procedure 

quantified by a receiver-operating characteristic 

(ROC) curve analysis.  

First, for our validation, we define distinct, non-

overlapping “training” and “testing” portions of the 

data. Then, our “best” model, that identified in the 

Results section, is refit to the training set (this estab-

lishes new coefficient estimates based on the train-

ing data only). Next, this model form is used to pre-

dict responses for the testing data, and these pre-

dicted responses can be compared to the actual re-

sponses of this testing data. Importantly, this type of 

procedure identifies the true predictive capability of 

the model since the testing data was not used in the 

model-fitting. It is somewhat standard to use a 

slightly larger dataset for the training data, and we 

have chosen to do so. In addition, to mimic the way 

our model could be used in application, we have de-

cided to partition our data by year. Specifically, we 

chose 13 years of the 18 total years of data as a train-

ing set; this equates to slightly more than 70% of the 

entire data. The remaining 5 years (not necessarily 5 

consecutive years), about 30% of the full dataset, is 

designated as the testing set. Lastly, we repeat this 

procedure several times, randomly choosing training 

and testing sets, to ensure reliable results.   

For every training/testing iteration, we observe the 

receiver operation characteristic (ROC) curve. The 

ROC curve methodology has been adapted to nu-

merous fields and is especially useful for evaluating 

the accuracy of a statistical model that classifies sub-

jects into 1 of 2 categories (for example, logistic re-

gression). The ROC curve is a plot of sensitivity ver-

sus 1−specificity for varying values of the threshold 

for 𝜋 (the probability of an accident being severe in 

our case). The success of a model can be easily vis-

ualized by observing the ROC curve in relation to 

the transverse diagonal line, which corresponds to 

random chance. Typically, we observe the area un-

der the curve (AUC) to quantify the difference from 

random chance, which is 50%. The ROC curve has 

two major benefits: 1) it automatically reports re-

sults for a variety of threshold values, and 2) it con-

siders both forms of misclassification.    

For each iteration of training/testing described 

above, we calculated the AUC via the ‘pROC’ pack-

age in R (Robin et al., 2011). This also, by default, 



Laflamme, E.M., Villamagna, A., Kim, H.J., 

Archives of Transport, 69(1), 39-57, 2024 

53 

 

 

includes a 95% CI are computed with 2000 stratified 

bootstrap replicates. From the iterations, the AUCs 

are generally in the neighborhood of 75%. A ROC 

curve from one training/testing iteration is given be-

low in Figure 4. Interpreting AUC is subjective and 

relative, but this result indicates our model (as spec-

ified) is, by most standards, a good predictor of ac-

cident severity. This also lends credence to our pro-

cedure and model form as an appropriate choice. 

 

 
Fig. 4. ROC curve for one training/testing procedure 

in which 13 years of data is randomly se-

lected as the training set and the remaining 5 

years of data is set aside as the testing set. 

Also reported is the AUC, 75.4% in this case, 

along with the bootstrap confidence interval 

for the AUC 

 

6. Conclusion 

In this analysis, we develop a model framework for 

identifying the meaningful factors associated with 

severe wildlife vehicle collisions (WVCs). The ap-

proach is driven, primarily, by the data made availa-

ble to us by the NHDOT. This data contains detailed 

information for WVCs occurring between 2002 and 

2019, including the severity of the accident. Using a 

severity designation (either ‘severe’ or ‘not severe’) 

as the binary response, and using numerous explan-

atory variables based on the available information 

and variables commonly believed to be associated 

with WVCs, we used a logistic regression model 

form. We further augmented this model by using 

several additive terms for numerical variables. The 

benefit of this model, technically a generalized addi-

tive model (GAM), is that the additive terms auto-

matically estimate complicated, non-linear relation-

ships between the variables and response. Fitted re-

sults yielded several interesting relationships.   

The linear terms in our model (non-additive terms) 

correspond mostly to categorical variables, so inter-

pretation is relative to base case settings. Further-

more, many of the statistically/practically signifi-

cant results, and all those presented in this work, are 

interactions, so interpretation of one variable de-

pends on the setting of the other. A brief summary 

of our results for the linear terms is as follows. First, 

we found that, in inclement weather conditions, 

there is about a 22% increase in the odds of severity 

for slick surface conditions compared to dry surface 

conditions. Second, for the warmer months 

(spring/summer), there is a 42% decrease in the odds 

of severity for straight roads compared to those with 

curvature/incline. Third, for spring/summer months 

(as compared to the fall/winter), there is more than a 

3-fold increase in the odds of severity for two-way 

traffic. Fourth, the odds of severity decreases by 

48% for accidents occurring on NH’s two major in-

terstates highways, I-93 and I-89.  

The additive terms are interpreted graphically, and a 

brief summary of our results for these terms is as fol-

lows. First, for time-of-day, we observe increases in 

odds of severity in the early hours, between mid-

night and 6AM, and after 5PM. The morning and af-

ternoons observed decreases in odds of severity with 

a low point around 8AM. For posted speed limit, 

speeds between 45 and 60 mph are associated with 

an increase in the odds of a severe accident. On the 

other hand, both lower and higher speeds (those be-

low 45 and above 60 mph) are associated with a de-

crease in the odds of a severe accident. Lastly, for 

human density, low, mid-range, and high densities 

are associated with decreases, increases, and de-

creases in odds of severity, respectively.  

We validated our procedure by randomly partition-

ing years of data into training and testing sets. Then, 

for the training data, we refit our model form to re-

estimate the parameters before applying the model 

to the testing data. ROC curves with AUC were used 

to evaluate the predictions, and the validation results 

gave ample evidence that our model is well specified 

and an effective predictor.  

Ideally, our results could be used to inform decision-

makers and ultimately affect policy or remedial 
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measures, so-called “targeted preventative 

measures…to have the maximum impact on driver 

alertness” (Neumann et al., 2012). There are a vari-

ety of preventative measures that exist today (some 

relatively low cost, others more costly), such as 

wildlife warning signs, speed limit reductions, wild-

life warning reflectors (which create an optical fence 

for wildlife), and wildlife corridors, to name a few. 

Our results associated with roadway features, posted 

speed limit and roadway alignment, could be used to 

identify locations where some preventative 

measures (as mentioned above) may be added. How-

ever, generally, these remedial measures have been 

shown to be either ineffective in the long term (Be-

ben, 2012) or of little value (Benten et al., 2018). In 

addition to this, our other results, either interactions 

or additive terms, have temporal/seasonal effects, 

which means these effects are not constant through-

out the day/year, and there is often a habituation ef-

fect associated with fixed preventative measures in 

such cases (Beben, 2012). Instead, a more realistic 

approach would be to implement a tailored driver 

warning added into a navigation system. This would 

allow drivers to be alerted only when necessary.    

Like any analysis, there were some limitations 

which may be addressed in future work. First and 

foremost, the data collected by the NHDOT, while 

spanning several years and mostly complete, did not 

distinguish the type of animal involved in the crash. 

Ideally, with this information, we could incorporate 

animal-specific behavior in the analysis. For exam-

ple, Etter et al. (2002) suggested behavioral response 

of deer to hunting might contribute to an autumn 

peak in DVCs. Other species-specific behavior 

would surely contribute to a deeper understanding of 

WVCs. Next, there is no information related to the 

demographics of the driver involved in the WVC. A 

key finding in Huijser et al. (2008) was that, unlike 

vehicular accidents in general, WVCs have no pro-

nounced spike for young drivers. This suggests that 

driving experience does not reduce the risk of being 

involved in a WVC, or possibly that younger drivers 

are not typically on the types of roads where WVCs 

occur. In any event, this information would likely 

help to identify more factors associated with severe 

WVCs. Also, it would be interesting to know if al-

cohol was involved in the WVCs, if the driver was 

distracted (cell phone use, etc.), if the driver was us-

ing a seatbelt, or the type of vehicle involved. These 

factors are known to contribute to accident severity 

in general, and this information should be collected 

at the accident scene, so theoretically it should be 

possible to obtain for future studies. Also, with all 

works related to WVCs, underreporting must be 

acknowledged. As stated by Savolainen et al. 

(2011), “[underreporting] is an extremely important 

matter because estimating models with under-re-

ported data can easily lead to erroneous inferences, 

particularly because less severe crashes are far more 

likely to be underreported than more severe crashes, 

which results in a data sample which is nonrandom 

in its dependent variable thereby violating the fun-

damentals of traditional statistical and econometric 

model derivations.” Furthermore, according to 

Snow et al. (2015), as much as 2/3 of WVCs may be 

unreported in some cases. Fortunately, as stated by 

the authors, estimates based on underreported data 

are reliable until very high rates of underreporting 

occur. Lastly, our data comes exclusively from the 

state of New Hampshire. While this data does repre-

sent a variety of different locations, such as rural and 

urban areas, it is not clear that our results are gener-

ally transferable. Future work may include WVCs 

from more diverse areas. 
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