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Abstract: 

Efficient fuel consumption in the world is essential in automotive technology development due to the increase in vehicle 

usage and the decrease in global oil production. Several studies have been conducted to increase fuel consumption savings, 
Fuel Cells (FCs), the application of alternative energy vehicles and the Engine Control Unit (ECU) system. FCs do not 

require oil energy to propel the vehicle, so this technology promises to reduce energy consumption and emissions. However, 

this research still leaves problems. FCs are susceptible to short circuit hazards, and ownership costs are very high. Alter-
native energy applications produce less power, less responsive acceleration, and insufficient energy sources to enter mass 

production. The ECU application still has an orientation toward achieving stoichiometry values, so the increase in fuel 

efficiency has the potential to be improved. Driving behavior is a variable that has a close relationship with fuel consump-
tion efficiency. However, research on driving behavior is only studied for implementation in autonomous car-following 

technologies, safety systems, charging needs characteristic of electric vehicles, emission controls, and display images on 
in-vehicle information systems. Meanwhile, research on driving behavior as a control system to improve fuel efficiency has 

not been carried out. To that end, this study proposes the use of driving behavior for a newly designed control system to 

improve fuel efficiency. The control system in this research is a prototype model to be assessed using the Fuel Saving Index 
(FSI) analysis. An artificial neural network is used to help the recognition of driving behavior. The results showed that the 

newly designed control system was categorized on scale IV of FSI. On this scale, the power generated by the engine is quite 

optimal when it is in the eco-scheme driving behavior. The driving behavior control system can significantly improve the 
efficiency of fuel consumption. Air to Fuel Ratio (AFR) is achieved above the stoichiometric value. 
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1. Introduction 

The issue of fuel efficiency is presently a hot topic 

at the global level, especially in the development of 

automotive technology, where this energy perfor-

mance is necessary (Uslu & Celik, 2020). The lim-

ited number and reduction of energy production also 

trigger the necessity of implementing efficiency (Al-

fattah, 2020). Although the need for vehicles contin-

uously increases with the elevation of population 

growth. Many efforts have reportedly been con-

ducted to solve this problem, including the develop-

ment of FCs (Xiong et al., 2019; Sun et al., 2019). 

These are part of the exciting developments of sci-

ence and technology breakthroughs, which have the 

potential to achieve good efficiency and emissions. 

The FCs do not have clear rules for mass production, 

as infrastructure and high prices are still the main 

obstacles. To improve this vehicular efficiency, an-

other breakthrough involves the development of al-

ternative power, including methanol and ethanol 

(Biswal et al., 2020). This research uses renewable 

energy and is processed from vegetable energy. 

From an economic point of view, the selling price 

and availability of energy are still not feasible to en-

ter the market because it requires a long input time 

for mass production.  

The development of other alternative energy also in-

volves the application of gas fuels, such as LNG 

(Liquid Natural Gas), CNG (Compressed Natural 

Gas), and LPG (Liquid Petroleum Gas) (Mehra et 

al., 2018). LPG is a gaseous fuel that produces 

cleaner emissions and better efficiency. This study 

found that LPG produces cleaner emissions and bet-

ter efficiency, although it has less power and accel-

eration than gasoline engine vehicles (Alper & Do, 

2018; Nguyen & Nguyen, 2018).  

Another study also involves the development of the 

ECU to control the fuel system (Robertson & 

Prucka, 2020). According to Dennis and Robert 

(Robertson & Prucka, 2020), AFR has a high poten-

tial in controlling efficiency. The ECU focused on 

the input of CPU-based sensors to regulate fuel per-

formance. As the brain of fuel efficiency control, the 

Central Processing Unit (CPU) has reportedly been 

developed with several variables, including artificial 

intelligence (Sardarmehni et al., 2020); (Y. Wang et 

al., 2020), road conditions (Munahar et al., 2020), 

lambda achievement (λ) and vehicle dynamics 

(Ahmed & Al, 2019). Based on research (Y. Wang 

et al., 2020) and (Sardarmehni et al., 2019), effi-

ciency was predicted using fuzzy to control AFR, 

although lean fuel mixtures were not considered. 

Despite this limitation, both studies still had the po-

tential to improve efficiency. Meanwhile, improving 

the efficiency system based on road conditions can 

be achieved well. However, this research has not yet 

developed a driver behavior control program 

(Munahar et al., 2020). According to Ahmed 

(Ahmed & Al, 2019), the lambda value was oriented 

with 1, a comparison of the stoichiometry AFR. This 

study had good results, although the use of lean mix-

tures to improve fuel efficiency had not been as-

sessed. Muji (Setiyo M. & Munahar, 2017) also de-

veloped a control system based on vehicle dynamics 

when operating on the highway, although the driver 

behavior aspect was not considered.  

Furthermore, another improvement method was de-

veloped based on the predictions of driver behavior, 

which were assessed under various conditions (Xing 

et al., 2020). While (Xing et al., 2020) such as a 

close relationship between acceleration or decelera-

tion with energy consumption. The results were still 

predictive, although not inputted into the system de-

sign direction. Meanwhile, another observation was 

provided on the driver behavior when a vehicular 

operation was carried out with several variables, in-

cluding vehicle technology development of car fol-

lowing, safety systems, charging needs characteris-

tic of electric vehicle, electric car drive system, as 

well as emission control, and display images on in-

vehicle information systems.  

Car following researcher (Zhao et al., 2020) ob-

served the driving behavior when following another 

vehicle. The observed vehicles are autonomous ve-

hicles and vehicles with human drivers. The results 

of the study concluded that subjective trust greatly 

influences driving behavior. However, fuel con-

sumption has not been discussed in this study. 

(Sharma et al., 2019) and (Fadhloun & Rakha, 

2020), a behavior control system was also developed 

for driving patterns when the driver decides to fol-

low another vehicle. This research provides safe 

driving recommendations, although the factor of 

fuel use was not considered. 

Next, researchers (Grove et al., 2019) and (Wang et 

al., 2020) also observed driver behavior when 

asleep, and the obtained results were subsequently 

used to develop a safety control feedback system. 

Furthermore, (Hong, Chen, & Wu, 2020) assessed 
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the safety behaviors needed to avert accidents, with 

(Martinelli et al., 2020) storing drivers' attitudes in a 

device after recording. The results indicated that the 

machine was immediately shut down when other be-

haviors were not identified due to the security sys-

tem assuming that the vehicle had been stolen. Ac-

cording to (Yuan, Lu, & Wang, 2020), an adaptive 

Forward Vehicle Collision Warning (FCW) was de-

veloped to signal the driver when the behavior was 

dangerous. These five studies focused on identifying 

driver behaviors, although energy consumption was 

still not evaluated.  

Based on (Ashkrof et al., 2020), the driver behavior 

was subsequently analyzed when selecting a road 

route to determine the charging system for EVs ve-

hicles. This driver behavior character is useful for 

determining the planning location for the most effec-

tive EV filling station construction. This study fo-

cused on controlling the needs characteristics of 

electric vehicles on vehicular, although fuel effi-

ciency was not carried out. Other researchers 

(Stogios et al., 2019) and (Monika et al., 2022) ex-

amined driver behavior towards changes in the gen-

eration of emissions. Subsequently, the study by 

(Kohl et al., 2020) analyzed display images on in-

vehicle information systems on vehicle of driver be-

havior. These three studies looked at changes in 

driver behavior based on changes in emissions in 

traffic lights and graphical displays. However, de-

velopment was not observed in the fuel consumption 

influenced by the behavior. 

To improve fuel efficiency, several previous studies 

involved the development of EVs, FCs, as well as 

vehicular alternative energy, and ECU system appli-

cations. The improvement of driver behavior identi-

fication was consequently used to develop cars fol-

lowing technology, safety systems, vehicle control, 

emission control, and graphical displays. Several 

studies that have been conducted have not discussed 

fuel-efficiency control that considers driver behav-

ior. This research needs to be done because the driv-

er's behavior closely relates to fuel use, as stated by 

previous researchers (Xing et al., 2020). Therefore, 

this study proposes a new method by developing a 

prototype model of a driving behavior control sys-

tem using a neural network based on FSI assess-

ment. The neural network is embedded in the control 

system designed to recognize driving behavior. This 

study carries out the suggestions presented by Yang 

et al. (Xing et al., 2020) with the concepts shown in 

Fig. 1. 

 

2. Methods 

This study was designed in several stages: installing 

sensors, designing and installing a vehicular accel-

eration control system with the National Instruments 

(NI) MyRio microcontroller, obtaining actual signal 

data on driving behavior using data acquisition, de-

signing vehicle engine modeling, and conducting 

training and embedded neural network in Integrated 

Circuit (IC) ATmega 328.  

.  

2.1. Equipment Calibration 

The utilized equipment had several components for 

the control system, including sensors a microcon-

troller, and IC ATmega 328. The specifications of 

this equipment are shown in Table 1. 

 

 

Description: 

1. Fuel tank. 

2. Fuel pumps. 
3. Machine. 

4. Throttle valve opening speed 

sensor.  
5. Braking speed sensor. 

6. Steering speed sensor. 
7. Developed control system us-

ing neural network. 

 

 

Fig. 1. The prototype concept of a driving behavior control system using a neural network 
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Table 1. The equipment specifications 

No. Information Description Specification 

1. Vehicle type Engine type Gasoline 

2. Engine volume 1500 cc 

3. Vehicle type Saloon car 

4. Number of cylinders 4 cylinders 

5. Engine cycle 4 stroke engines 

6. Speed sensor Voltage 12 Volt 

7. Type Gearbox 

8. Rotation  250 Rpm 

9. Output 5 Volt 

10. Dimension 137 x 86 x25 mm 

11. Microcontroller for driving 

behavior recognition 

Processor 667 Mhz 

12. Power Input 6 – 16 VDC/14 watt 

13. Analog input, resolution 500ks/s, 12 bits 

14. Product Type NI MyRio 2015 

15. Memory DD3 533 MHz 

16. IC ATmega 328 RAM 2K Byte 

17. Power input 5 volt 

18. Speed 20 MHz 

19. Flash 32 k Byte 

20. Programmable I/O 23 Line 

 
Sensors are used to measure throttle valve opening, 

braking, and steering speeds, through a Direct Cur-

rent (DC) motor. The signal generated by these com-

ponents is observed as a calibrated analog through a 

tachometer (mm/s). The calibration process was 

subsequently carried out by rotating the sensor with 

a DC motor, whose speed was adjusted by the con-

troller. The signal generated was then processed by 

a conditioning circuit containing a rectifier and fil-

ter. Using NI data acquisition board, the signal con-

ditioning outputs were displayed by the computer. 

These data were then compared with the tachometer 

reading values, as the sensor calibration scheme is 

shown in Fig. 2. ( Calibration of DC motor as rota-

tional speed sensor). 

2.2. Research Equipment Set-up  

The equipment installation set-up is shown in Fig. 3. 

The calibrated sensor was mounted on a single shaft 

to the throttle valve (2), the brake pedal top (3), and 

the steering system (4), which were connected 

through the timing belt. The signal generated by the 

sensor is transferred to the developed control system 

as speed data (mm/s), where the throttle valve mark 

is observed as throttle valve opening speed data. The 

braking and steering signals were also observed as 

the driver's speed data when releasing/stepping on 

the brake pedal and turning the wheel.  

 

 

 
Fig. 2. Sensor calibration 



Munahar, S., Triwiyatno, A., Munadi, M., Setiawan, J.D., 

Archives of Transport, 63(3), 123-141, 2022 

127 

 

 

 

Description: 
1. Fuel tank.  

2. Throttle valve speed sensor.  

3. Braking speed sensor. 
4. Steering speed sensor. 

5. Engine. 

6. Developed control system. 
7. Microcontroller NI MyRio. 

8. IC ATmega 328. 

 

Fig. 3. The equipment set-up 

 

Furthermore, the developed control system (6) had 

two components, namely a NI MyRio microcontrol-

ler (7) and an IC ATmega 328 (8). The NI MyRio 

microcontroller helps to convert sensor speed data 

into acceleration parameters, with each information 

averaged within 15 mins. However, The IC ATmega 

328 helps to process average acceleration change 

(mm/s2) into a driver's behavior decision. This be-

havior was designed through a neural network 

trained and embedded in MATLAB Simulink and IC 

ATmega 328, respectively, with LEDs utilized as 

behavioral indicators. Besides the real-time identifi-

cation of driver behavior, this study is expected to 

futuristically drive the fuel pump towards efficiently 

controlling the energy entering the engine (5). The 

changes are monitored through a computer (9) and 

an ATmega 328 IC-based LED. 

 

2.3. Driving Behavior Recognition Control Sys-

tem Model 

2.3.1. Acceleration Change Control System 

The model of driving behavior control system used 

the acceleration change obtained from Eqs. (1). This 

calculation has an i value of 180 equations. 

 

𝑎𝑖 =
(𝑣𝑖−𝑣(𝑖−1))

(𝑡𝑖−𝑡(𝑖−1))
   (1) 

 

where: i = 1,2,…,180 

 𝑎𝑖 - Acceleration value at time i (mm/seconds2), 

 t - Time of change of acceleration in units of sec-

onds,  

 𝑣𝑖 - Speed value at time i (mm/seconds), 

 𝑣(𝑖−1) - Speed value at time i -1 (mm/seconds). 

 

The acceleration control system is obtained from the 

change in speed at i (𝑣𝑖) at the time i (𝑡𝑖) minus the 

current speed at i -1(𝑣𝑖−1) at time i-1 (𝑡𝑖−1). The pro-

cess of collecting speed data to be converted to ac-

celeration is carried out every 5 seconds for 15 

minutes (900 seconds), with data having a value of 

N 180 based on Eq. (1). These equations were cre-

ated in the LabVIEW NI MyRio software, which 

was realistically connected to the sensors of the 

throttle-valve opening, braking, and in-vehicle steer-

ing speeds, respectively. Driving behavior is a set of 

attitudes when driving a vehicle for a long time. 

Driving behavior is designed to have two schemes, 

including eco, and stoichiometry schemes. The driv-

ing behavior scheme occurs because it has similari-

ties between the driver's attitudes in a certain time 

and does not occur in a very short time (seconds), so 

data retrieval within 5 seconds is sufficient to de-

scribe the driver's behavior scheme. The driving be-

havior that falls into the eco scheme category is 

formed because of the similarity of smooth behavior 

that occurs at a certain time. So are the driving be-

havior stoichiometry schemes. 

 

2.3.2. Calculation of Acceleration Change Aver-

age  

Using the Moving Average (MA) formula, the 

changes in the average acceleration began from Eqs. 

(2). 
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𝑀𝐴𝑖 =
𝑎𝑖+𝑎𝑖+1+𝑎𝑖+2

3
   (2) 

 

where: i = 1,2,…,180 

 𝑀𝐴𝑖 - Average acceleration (mm/seconds2). 

𝑎𝑖 - Acceleration value at time i (mm/seconds2). 

𝑎𝑖+1 - Acceleration value at time i+1 (mm/seconds2  

𝑎𝑖+2 - Acceleration value at time i+2 (mm/seconds2). 
 

A total of 178 results were obtained and averaged 

(𝑀𝐴̅̅̅̅̅), subsequently leading to Eq. (3). These were 

then transferred to the neural network embedded in 

the ATmega 328 IC. 

 

𝑀𝐴̅̅̅̅̅ =
𝑀𝐴1+𝑀𝐴2+⋯.𝑀𝐴178

178
  (3) 

 

The change in average acceleration (𝑀𝐴̅̅ ̅̅̅) was also 

used to calculate the signal generated by the throttle 

valve, steering, and braking sensors. In addition, 

Eqs. (2) and (3) were created in LabVIEW NI 

MyRio 2015. The calculation of the throttle valve 

sensor's average acceleration 𝑀𝐴̅̅̅̅̅ is used to identify 

the behavior of the throttle valve opening denoted by 

𝑀𝑡𝑣. The calculation of the average acceleration 𝑀𝐴̅̅̅̅̅ 

of the braking sensor is used to recognize the behav-

ior of the braking operation, denoted by 𝑀𝑠𝑡, and the 

calculation of the average acceleration 𝑀𝐴̅̅̅̅̅  of the 

steering sensor is used to identify the behavior of the 

steer operation, denoted by 𝑀𝑏𝑟. 

 
2.3.3. Neural Network Control System Design 

The design of the driver behavior control system was 

carried out using a neural network, where the algo-

rithm method used was the Levenberg Marquardt 

training type (trainlm). This training performance is 

designed based on Mean Squared Error (MSE), us-

ing 3 inputs, 1 hidden layer, 1 output layer, and 300 

nodes. Also, the layer types used were logsig, tansig, 

and purelin model, as the neural network training 

utilized Epoch 20,000 with a success rate of 99.93%. 

This developed design is shown in Fig. 4, with the 

neural network being created and embedded in the 

MATLAB Simulink and IC ATmega 328, respec-

tively.  

 

2.4. Vehicle Engine Modeling Design 

This prototype system is categorized into two mod-

els: vehicle engine modeling and driving behavior 

recognition design. Vehicle engine modeling was 

  

 
Fig. 4. The neural network design embedded in the 

ATmega 328 IC 

 
separately created in the MATLAB Simulink to de-

scribe the operation of the driving behavior control 

system. Meanwhile, the recognition control system 

modeling was created by the LabVIEW NI MyRio 

realistically installed on the vehicle. This modeling 

was used to identify the actual driving behavior. 

Data was also obtained in training the neural net-

work to be included in the simulation vehicle engine 

modeling. In addition, the neural network was em-

bedded in the IC ATmega 328 and used for fuel con-

trol in a future report. The designated modeling 

block diagram is shown in Fig. 5. 

The vehicle engine modeling equation was in line 

with several previous studies (Setiyo M. & 

Munahar, 2017),(Sardarmehni et al., 2019). Based 

on this research, the vehicle engine modeling is di-

vided into many parts, including the intake manifold 

pressure 𝑃�̇�, the engine temperature �̇�𝑖, fuel dynam-

ics �̇�𝑎𝑡, engine speed (ṅ), and vehicle dynamics.  

The intake manifold pressure �̇�𝑖  is the dynamic 

modeling of the air entering the engine during oper-

ation due to the suction emanating from the piston 

movement, as shown in Eq. (4). 

 

�̇�𝑖 =
𝑘∙𝑅

𝑉𝑖
(−�̇�𝑎𝑝 ∙ 𝑇𝑖 + �̇�𝑎𝑡 ∙ 𝑇𝑎 + �̇�𝐸𝐺𝑅 ∙ 𝑇𝐸𝐺𝑅)  (4) 

 
The temperature of the air entering the engine �̇�𝑖 

greatly affected the changes in combustion due to 

the process requiring a mixture of air and fuel. The 

temperature of the air entering the engine under ac-

tual conditions is measured by the IAT (Intake Air 

Temperature Sensor), as shown in Eq. (5). 
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Fig. 5. The designated block diagram 

 

�̇� =  
𝑅 ∙ 𝑇𝑖

𝑝𝑖 ∙ 𝑉𝑖
[−�̇�𝑎𝑝 (𝑘 − 1)𝑇𝑖

+ �̇�𝑎𝑡 (𝑘 ∙ 𝑇𝑎 − 𝑇𝑖)

+ �̇�𝐸𝐺𝑅(𝑘 ∙ 𝑇𝐸𝐺𝑅 − 𝑇𝑖)] 

(5) 

 

The dynamics of airflow in the throttle valve 𝑚𝑎𝑡̇  

also greatly affect the air pressure in the intake man-

ifold �̇�𝑖 described in equations (6) and (7). 𝛽1(𝑢) is 

the position of the throttle valve. 𝛽2 ∙ (𝑝𝑟) is a func-

tion of 𝑝𝑟 , which describes the ratio of manifold 

pressure to air pressure 𝑝𝑎. Air pressure entering the 

engine was measured using the Manifold Absolute 

Pressure Sensor (MAP). In this manifold, the air 

pressure was constantly changing �̇�𝑎𝑝 , depending 

on the engine speed ṅ and vehicle load. This sensor 

detected negative pressure in the chamber before en-

tering the engine. The airflow in the throttle valve 

was also strongly influenced by position, as ob-

served in Eqs. (8) and (10), where the 𝑚𝑎𝑡0 , 

𝑚𝑎𝑡1, 𝑢0, and 𝑝𝑐 are constant.  
 

�̇�𝑎𝑡(𝑢, 𝑝𝑖)

= 𝑚𝑎𝑡1 ∙
𝑝𝑎

√𝑇𝑎

𝛽1(𝑢) ∙ 𝛽2 ∙ (𝑝𝑟) + 𝑚𝑎𝑡0 
(6)  

 

�̇�𝑎𝑝(𝑛, 𝑝𝑖) =
𝑉𝑑

120 ∙ 𝑅 ∙ 𝑇𝑖

(𝜂𝑖 ∙ 𝑝𝑖)𝑛 (7)  

 

𝛽1(𝑢)  = 1 − cos(𝑢) −
𝑢0

2

2!
 

(8)  

 

𝑝𝑟  =
𝑝𝑖

𝑝𝑎
 (9)  

 

𝛽2(𝑝𝑟)  = √1 − (
𝑝𝑟−𝑝𝑐

1−𝑝𝑐
) if 𝑝2 ≥ 𝑝𝑐 

              = 1 if 𝑝2 < 𝑝𝑐 

(10) 

 

Based on this study, the engine generated power to 

rotate the crankshaft (ṅ) used in driving the vehicle's 

load, as shown in Eq. (11) where Pp is the pumping 

power, 𝜂𝑖 is efficiency, 𝑃𝑏is load and friction pow-

ers, 𝑃𝑓  is friction power variables, �̇�𝑓  is the fuel 

flow entering the engine as shown in Eq. (12), ANN 

recognizes the driving behavior scheme to control 

�̇�𝑓, 𝜆 is a ratio between the stoichiometry and actual 

AFR value calculated in equation 13), ∆τd is the in-

jection delay time when the fuel was sprayed into the 

combustion chamber, and Lth  is the stoichiometry 

AFR at 14.7 (Wu & Tafreshi, 2019).  

 

�̇� = −
1

𝑙𝑛
(𝑃𝑓(𝑝𝑖 , 𝑛) + 𝑃𝑝(𝑝𝑖 , 𝑛) + 𝑃𝑏(𝑛))

+
1

𝑙𝑛
𝐻𝑢. 𝜂𝑖(𝑝𝑖 , 𝑛, 𝜆)�̇�𝑓(𝑡 − ∆𝜏𝑑) 

(11) 

𝑚𝑓̇ =
�̇�𝑎𝑝

𝐿𝑡ℎ
 (12) 

𝜆 =
�̇�𝑎𝑝

�̇�𝑓
 (13) 
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According to Eq. (14)-(18), �̇�𝑓𝑓 is the mass of the 

fuel oil film, �̇�𝑓1 is the energy emanating from the 

injector, �̇�𝑓𝑣 is the fuel flow entering the engine as 

a fog, n is the crankshaft rotation, τ𝑓 is the fuel va-

porization time constant and 𝑋𝑓 is the energy depos-

ited in the intake manifold chamber. 
 

�̇�𝑓𝑓  =
1

τ𝑓
(−𝑚𝑓𝑓 + 𝑋𝑓 × �̇�𝑓1 )  (14) 

�̇�𝑓𝑣  = (1 − 𝑋𝑓)�̇�𝑓1  (15) 

𝑚𝑓̇  =  �̇�𝑓𝑣 + �̇�𝑓𝑓 (16) 

𝑋𝑓(pi, n) =  −0.277pi − 0.055n + 0.68 (17) 

τ𝑓(pi, n)

= 1.35 × (−0.672n + 1.68)
× (pi − 0.825)(pi − 0.825)2

+ (0.06 × n + 0.15) + 0.56 

(18) 

 

The vehicular dynamics were strongly influenced by 

the moment of inertia 𝐼𝑣, which is the tendency to 

maintain its position due to the forces acting on the 

vehicle body. Vehicles have wheels to deliver loads 

at various rotational speeds 𝑁𝑤, as the engine rota-

tion torque was changed for load movability with the 

transmission  𝑅𝑇𝑅 . It was also divided into the 

wheels with the final drive 𝑅𝑓𝑑 , as 𝑇𝑙𝑜𝑎𝑑  was ob-

served as the torque driving the load in Eq. (26). 

Based on Eqs. (19)-(25), 𝑇𝑜𝑢𝑡  and 𝑇𝑖𝑛 are the tor-

ques emanating from the transmission output and the 

clutch output/transmission input, respectively, 𝑁𝑖𝑛 

and 𝑁𝑜𝑢𝑡 are the rotations entering and exiting the 

transmission input and output, respectively, 𝑅𝑙𝑜𝑎𝑑0 

and 𝑅𝑙𝑜𝑎𝑑2= the aerodynamic drag coefficients and 

friction, 𝑇𝑏𝑟𝑎𝑘𝑒 is a brake torque, and mph is vehi-

cle's linear velocity,  𝑇𝑖𝑛  is the transmission input 

torque (clutch output torque), K is the K-factor ca-

pacity, Ne = engine speed, 𝑓1 is the ratio factor of 

the clutch's ability to transmit engine torque, 𝑓2 is 

the ratio factor of the clutch disc's ability to transmit 

engine torque, 𝑅𝑇𝑄 is the engine torque ratio result-

ing from the clutch, 𝑓3 is the gear speed ratio in the 

transmission. 
 

𝑇𝑖𝑛  =  
𝑁𝑒

2

𝐾2 × 𝑅𝑇𝑄  (19) 

𝐾 = 𝑓1 ×
𝑁𝑖𝑛

𝑁𝑒
  (20) 

𝑅𝑇𝑄 = 𝑓2 ×
𝑁𝑖𝑛

𝑁𝑒
  (21) 

𝑅𝑇𝑅  = 𝑓3(𝑔𝑒𝑎𝑟) = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜  (22) 

𝐼𝑣 × 𝑁𝑤  = 𝑅𝑓𝑑(𝑇𝑜𝑢𝑡 − 𝑇𝑙𝑜𝑎𝑑)  (23) 

𝑇𝑜𝑢𝑡 = 𝑅𝑇𝑅 ×  𝑇𝑖𝑛  (24) 

𝑁𝑖𝑛 = 𝑅𝑇𝑅  × 𝑁𝑜𝑢𝑡  (25) 

𝑇𝑙𝑜𝑎𝑑  = 𝑠𝑔𝑛(𝑚𝑝ℎ) × (𝑅𝑙𝑜𝑎𝑑1 +
𝑅𝑙𝑜𝑎𝑑2𝑚𝑝ℎ2 + 𝑇𝑏𝑟𝑎𝑘𝑒)  

(26) 

 

2.5. Driving Behavior Recognition Cluster 

Driving behavior was identified by throttle-valve 

opening, steering, and braking operations, through 

three schemes: the economizer (Eco), stoichiometry, 

and sporty. Eco and sporty schemes were calibrated 

based on previous studies. The results showed that 

the eco-scheme driver was determined when the be-

havior smoothly operated the vehicle through busy 

urban streets between 40-60 km/h (Vaezipour, 

Rakotonirainy, & Haworth, 2018). The sporty-

scheme driver was determined when the behavior 

quickly operated the vehicle through a high and ad-

venturous spirit above 80 km/h (Reinolsmann et al., 

2019). Meanwhile, the stoichiometry scheme was 

determined based on the range between eco and 

sporty behaviors, as shown in Table 2. Therefore, 

this study only focused on the applications of driving 

behavior to the eco and stoichiometry schemes. 

 

Table 2. Driving Behavior Schemes 

No. 
Scheme of 

driving behavior 

Type of driving operation 

𝑀𝑡𝑣 𝑀𝑠𝑡 𝑀𝑏𝑟 

1. A 1 1 1 

2. B 1 1 2 

3. B 1 2 1 

4. B 1 1 3 

5. B 1 2 2 
6. B 2 2 2 

7. B 2 1 1 

8. B 2 2 1 
9. B 2 1 2 

10. B 1 2 3 

11. B 1 3 2 
12. B 1 3 3 

13. B 1 3 1 

23. B 2 2 3 
24. B 2 3 3 

25. B 2 3 2 

26. B 2 3 1 
27. B 2 1 3 
Note : A = Economizer, B= Stoichiometry, Low = 1, Medium = 2, 

and High = 3. 
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3. Result and Discussion 

The driving behavior was designed with three in-

puts: throttle-valve opening acceleration, braking, 

and steering operations. The operating behavior of 

the throttle valve opening acceleration is obtained 

from the sensor signal mounted at the end of the TPS 

(Throttle valve Position Sensor) shaft. The result 

was subsequently used as the throttle valve opening 

speed data when the driver increased/decreased the 

vehicle velocity. The data collection of this behavior 

was also carried out for 2,700 seconds (45 minutes), 

with the control system being designed to provide 

periodic decisions every 15 minutes (900 seconds). 

Additionally, the throttle valve opening speed signal 

is shown in Fig. 6. 

 

3.1. Throttle Valve Operation Behavior 

The driving behavior for the throttle valve opening 

operation has different behavior, which is presented 

in Figure 6. In the first period (0-900 s), the throttle 

valve opening behavior has a speed of 0 - 3.5 mm/s. 

In the second period (901-1800 s), the throttle valve 

opening behavior was 0.5 - 3.8 mm/s. The third pe-

riod (1801- 2700 s) was in the range of 0.5 - 3.4 

mm/s. 

The throttle-valve opening speed data, generated us-

ing Eqs. (1)-(3) and the sensor at the end of the TPS 

was then converted into acceleration parameters, as 

shown in Fig. 7. in which the average value of throt-

tle-valve opening acceleration 𝑀𝑡𝑣  had a value of 

0.001 mm/s2 (low range) in the first and second 900 

seconds. Meanwhile, an average value of 0.002 

mm/s2 (medium-range) was observed in the third pe-

riod. At 2,700 seconds (45 minutes), two different 

throttle-valve opening behaviors were produced, 

namely low and medium scales. The clustering of 

the average throttle-valve opening acceleration val-

ues refers to Table 3. 

 

3.2. Steering Operation Behavior  

Steering operation is the driver's behavior 

when turning the vehicle wheels left or right. This 

operation was measured by attaching sensors to the 

steering wheel connected to a timing belt, and this 

sensor produced an analog signal, which provided 

steering speed data. The data collection period was 

also carried out for 2,700 seconds (45 minutes) when 

the vehicle was operating under different conditions. 

For the first, second, and third 900 s, the steering op-

eration had speeds of 0-170, 0-160, and 0-200 mm/s, 

respectively. The value of the change in steering op-

erating speed is presented in Fig. 8. 

Using Eqs. (1)-(3), these results were then converted 

into steering acceleration data, which were subse-

quently inputted into the LabVIEW NI MyRIO soft-

ware. The changes in the processed steering acceler-

ation 𝑀𝑠𝑡 are shown in Fig. 9, as the procedure was 

carried out for 15 minutes (900 seconds), with data 

retrieved every 5 seconds

 

 
Fig. 6. The signal of throttle valve opening speed 
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Fig. 7. Changes in throttle opening acceleration behavior 
 

 
Fig. 8. Steering operating speed signal 

 

The data collection process was carried out as many 

as 180 data, with a range of retrieval of 2,700 sec-

onds (45 minutes).In the first, second, and third 900 

seconds, the average values of steering acceleration 

were 0.00 (low range), 0.019 (low range), and 0.05 

mm/s2 (medium range), respectively. These average 

values that two different steering operating behav-

iors were produced for 2,700 seconds (45 minutes), 

namely the low and high scale accelerations. The 

clustering of the average steering acceleration values 

refers to table 3. 

 

 

3.3. Braking Operation Behavior 

Braking operation is the behavior observed when the 

driver steps on the brake pedal to reduce or stop the 

vehicle movement. This behavior was measured by 

attaching a sensor to the brake pedal's end, produc-

ing an analog signal with braking speed data. The 

data collection period was also carried out for 2,700 

seconds, with the vehicle operating under different 

conditions. In the first, second, and third 900 sec-

onds, the braking operation had speed values of 0.5-

(-1), (-1)-1, and 0-2.7 mm/s. The value of the change 

in steering operating speed is shown in Fig. 10. 
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Fig. 9. Changes in steering operation acceleration behavior 
 

 
Fig. 10. Braking operation speed signal 

 

Using Eqs. (1)-(3), the sensor-based braking operat-

ing speed data were then converted into acceleration 

parameters, with the results being presented in Fig. 

11. This process was carried out for 15 minutes (900 

seconds), with data being retrieved every 5 seconds. 

A total of 180 data were also obtained during this 

process, with the range of retrieval conducted for 

2700 s (45 minutes). The results showed that the av-

erage braking acceleration 𝑀𝑏𝑟  had speed values of 

-0.0004 (medium range), 0.0001 (low range), and 

0.0002 mm/s2 (low range) for the first, second, and 

third 900 s, respectively. At 2700 s (45 minutes), 

three different operating behaviors were produced: 

the medium, high, and low scales. The clustering of 

the average braking acceleration values refers to ta-

ble 3. The calibration of the cluster average of throt-

tle valve operation 𝑀𝑡𝑠  steering 𝑀𝑠𝑡 , and braking 

accelerations 𝑀𝑏𝑟  are presented in Table 3, where 

the range is based on the driving scheme behavior as 

a fuel controller. 
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Fig. 11. Changes in braking operation acceleration behavior 
 

Table 3. The cluster average range of throttle valve operation 𝑴𝒕𝒔, steering 𝑴𝒔𝒕 and braking acceleration 

𝑴𝒃𝒓 
Description Low (mm/seconds2) Medium (mm/seconds2) High (mm/seconds2) 

𝑀𝑡𝑣 (-0.001)-0.001 0.002 0.003 

𝑀𝑠𝑡 (-0,02) – 0.02 (-0.05) – (-0.03) & 0.03 – 0.05 (-0.08) – (-0.06) & 0.06 – 0.08 

𝑀𝑏𝑟 (-0.0003)-0.0003 (-0.0009) – (-0.0006) & 0.0006 –0.0009 (-0.005) – (-0.001) & 0.001 – 0.005 

 

3.4. Vehicle Engine Modeling Results 

The MATLAB Simulink engine model also simu-

lated the calculations of the driving behavior control 

system when operating a vehicle. The simulation be-

gan by placing the throttle-valve position at 24-36% 

for 2,700 seconds, indicating the level of the sensor 

component when periodically opened from an angle 

of 24-36%, as shown in Fig. 12.  

The throttle-valve opening position also operated the 

engine towards the rotation of the crankshaft, whose 

motion was based on the power generated. In this 

process, the engine was rotated from 3,000-4,000 

rpm in 0-2,700 seconds, as shown in Fig. 13. 

 
Fig. 12. Simulation of throttle valve opening position 
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Fig. 13. Engine speed simulation 

 

After the engine ignition, the vehicle was operated 

on a simulated scale between 0-160 km/h. This pro-

cess vehicle speeds depending on the engine veloc-

ity and throttle-valve opening position. The process 

was also carried out using the transmission in the 

speed gear position 5. Additionally, the variational 

vehicle speed and transmission modeling are pre-

sented in Figs. 14 and 15, respectively. 

The neural network control system was then in-

cluded in the vehicle engine modeling based on ac-

tual driver behavior. The occurrences within the first 

and third 900 seconds were observed in the stoichi-

ometry scheme, with the second period in the eco 

group, as presented in Fig. 16. 

According to the driving behavior control system, 

the obtained identifications were used to control fuel 

flow entering the engine. This fuel-saving process 

increased with the entrance of driving behavior into 

the eco scheme through smooth driving processes on 

steering, braking, and throttle-valve opening levels. 

The vehicle also traveled between 40-60 km/h, op-

erating on a busy urban road. In this process, the 

driving behavior control system reduces the fuel en-

tering the engine, increasing energy-saving. The 

condition was also crucial due to fewer power re-

quirements in the eco scheme. Based on the driving 

behavior control system, the fuel flow/AFR differ-

ences had a very significant range of values, with the 

increased fuel-saving processes observed in at 900 - 

1,800 s (second period). Using this system, the AFR 

also had a value above 14.7, with achievement at 16. 

The fuel-saving value was adequately achieved with 

optimal engine power in this condition. The fuel 

flow also had a lower rate at 900 -1800 seconds, as 

presented in Figs. 17 and 18. 

 

 
 Fig. 14. Simulation of vehicle speed variations 
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Fig. 15. Transmission modeling in vehicles 

 

 
Fig. 16. Driver behavior recognition results based on neural networks 

 

 
Fig. 17. Differences in fuel flow between control systems with and without driving behavior 
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Fig. 18. AFR differences between control systems with and without driving behavior 

 

The developed control system also provided an ad-

vantage over several previous studies due to the in-

crease of the fuel AFR above the stoichiometry 

value (14.7) when the driver did not need much 

power. This advantage was observed from the 

smooth driver behavior when driving a vehicle. 

Based on the Fuel Saving Index (FSI) assessment 

analysis, the vehicle AFR, at 900 - 1,800 seconds, 

entered the cluster IV area. This area has a good sav-

ings rate and produces optimal engine power, which 

suits driver behavior in eco conditions. The results 

of the FSI analysis in this study are presented in Fig. 

19. Research that has been done proves that the fuel 

economy achieved is better than in previous studies, 

which only led to stoichiometric AFR (Ahmed & Al, 

2019)(Sardarmehni et al., 2019). The AFR achieved 

is in the AFR 16 range (above stoichiometry) when 

the steering behavior is in an eco scheme. 

 

 
Fig. 19. The results of the FSI assessment analysis for achieving AFR on the control system with driver 

behavior using a neural network
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FSI as an AFR assessment has several conditions, 

presented in table 4. FSI Class I has a pink color with 

an AFR value above 20. This cluster produces the 

highest fuel economy. However, the power gener-

ated is very poor, and the engine barely operates. FSI 

class II is brown with an AFR value of 18 – 20. The 

fuel economy effect is very good. However, the 

power generated is not good. The machine can only 

operate with light loads. FSI class III is purple with 

an AFR value of 16 - 18. Good fuel economy effect. 

The power generated is quite good. The machine can 

operate with a heavier load. FSI class IV is yellow 

with an AFR value of 14 – 16. The fuel-saving effect 

is quite good. The engine produces the most optimal 

power with a range of 70-80%. FSI class V with a 

light blue color code with an AFR value of 12 – 13. 

This class has relatively poor fuel economy. Maxi-

mum power generated. FSI class VI with dark blue 

color code with AFR values 11 – 12. The resulting 

fuel economy is very bad. This class produces en-

gine power that begins to fall. 

 

Table 4. FSI cluster for AFR assessment 

I IV 

II V 

III VI 

 

The research that has been carried out is in line with 

the suggestions from previous researchers, which 

stated that driver behavior has a close relationship 

with fuel consumption (Xing et al., 2020). In addi-

tion, the analysis of the FSI assessment to achieve 

AFR on the designed control system refers to the 

previous reference (Martyr & Plint, 2007). 

 

4. Conclusion 

Using a neural network, the driving behavior control 

system designed in a LabVIEW NI MyRio has been 

successfully embedded in the ATmega 328 IC. This 

modeling realistically identified the driving behav-

ior during vehicle operations. The results of the in-

troduction of driver behavior using a neural network 

in the first period (0-900 s) and third (1801 - the 

2700s) entered the stoichiometry scheme, while the 

second period (901 - 1800 s) entered the eco scheme. 

The throttle valve operating behavior in the first and 

second periods is in a low range (0.001), while the 

third period is in the medium range (0.002). The 

steering operations behavior in the first and second 

periods is in a low range (0.00 and 0.019), while the 

third period is in the medium range (0.05). The brak-

ing operation behavior in the second and third peri-

ods is in a low range (0.0001 and 0.0002), while the 

first period is in the medium range (-0.0004). Mean-

while, the MATLAB Simulink engine modeling 

successfully simulated the performance of the driv-

ing behavior control system when operating in a ve-

hicle to increase fuel-saving. The fuel-saving 

achieved was also included in the cluster IV FSI due 

to having the best index and the most optimal engine 

power. The AFR achieved is in the AFR 16 range 

(above stoichiometry) when the steering behavior is 

in an eco scheme. Subsequently, this FSI had six 

clusters, namely Cluster I had poor FSI due to the 

inability of the engine to operate (AFR above 20). 

Cluster II had excellent FSI and lacked engine 

power. Cluster III had very good FSI and a quite op-

timal engine power. Cluster IV had good FSI and 

optimal power. Cluster V had poor FSI and maxi-

mum engine power, and Cluster VI had poor FSI and 

engine power. Based on this study, the design of a 

prototype neural network-based driving behavior 

control system was successfully operated on a sim-

ulation scale, where the results obtained had a very 

high success rate. This concept can be used in EVs, 

FCs, alternative fuel vehicles, and hydrogen. How-

ever, the system did not consider the aspect of 

safety, which should be an essential development 

priority for subsequent future studies. 
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Nomenclature 

𝐼𝑣 Moment of inertia 

𝑘 Heat specification ratio (1.4) 

K K-factor capacity 

Lth AFR stoichiometry (14.7) 

�̇�𝑓 The dynamics of gasoline entering the 

combustion chamber (kg/s) 

𝑚𝑓𝑓 Mass of fuel film (kg/s) 
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𝑚𝑓𝑣̇  Gasoline flow in the form of steam (kg/s) 

�̇�𝑎𝑝 Mass flow of air to the engine (kg/s) 

�̇�𝑎𝑡 Airflow at throttle valve (kg/s) 

�̇�𝐸𝐺𝑅 Exhaust airflow (kg/s) 

𝑀𝑡𝑣 Average 𝑀𝐴̅̅̅̅̅ of throttle valve opening 

acceleration 

𝑀𝑠𝑡 Average 𝑀𝐴̅̅̅̅̅ of braking acceleration 

𝑀𝑏𝑟 Average 𝑀𝐴̅̅̅̅̅ of steering acceleration 

𝑁𝑖𝑛 The speed at transmission input (rpm) 

𝑁𝑜𝑢𝑡 The speed at transmission output (rpm) 

𝑁𝑒 Engine speed (rpm) 

𝑁𝑤 Wheel speed (rpm) 

𝑁𝑖𝑛 Transmission input rotation (rpm) 

�̇� Crankshaft rotation (krpm) 

Ƞ𝑖 Efficiency indication 

𝑁𝑒 Engine speed (rpm) 

𝑃�̇� Intake manifold pressure (bar) 

𝑃𝑏 Load power (kW) 

𝑃𝑓 Friction power (kW) 

𝑃𝑝 Pumping power (kW) 

R Gas constant (287 × 10−5). 

𝑅𝑓𝑑 Final drive ratio 

𝑅𝑙𝑜𝑎𝑑0 Friction drag coefficient 

𝑅𝑙𝑜𝑎𝑑2 Aerodynamic drag coefficient 

RTQ Engine torque ratio 

𝑅𝑇𝑅 The speed gear ratio on transmission 

𝑇𝑎 Ambient temperature (kelvin) 

𝑇�̇� Air temperature (kelvin). 

𝑇𝑙𝑜𝑎𝑑 Load torque 

𝑇𝑜𝑢𝑡 Transmission output torque 

𝑇𝑏𝑟𝑎𝑘𝑒 Braking torque 

𝑇𝑖𝑛 Torque on the transmission input shaft 

(kg.m) 

𝑇𝐸𝐺𝑅 Exhaust gas temperature (kelvin) 

u Throttle position (%) 

𝑉𝑖 Intake manifold volume (m3) 

𝑋𝑓 Fuel deposited in the inlet to the engine 

(kg/s) 

 Lambda 

∆τd Injection time delay (seconds) 

τf Fuel evaporation time constant 
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