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Abstract: 

Traffic flow is one of the fundamental parameters for traffic analysis and planning. With the rapid development of 

intelligent transportation systems, a large number of various detectors have been deployed in urban roads and, 
consequently, huge amount of data relating to the traffic flow are accumulatively available now. However, the traffic flow 

data detected through various detectors are often degraded due to the presence of a number of missing data, which can 

even lead to erroneous analysis and decision if no appropriate process is carried out. To remedy this issue, great research 
efforts have been made and subsequently various imputation techniques have been successively proposed in recent years, 

among which the k nearest neighbour algorithm (kNN) has received a great popularity as it is easy to implement and 

impute the missing data effectively. In the work presented in this paper, we firstly analyse the stochastic effect of traffic 
flow, to which the suffering of the kNN algorithm can be attributed. This motivates us to make an improvement, while 

eliminating the requirement to predefine parameters. Such a parameter-free algorithm has been realized by introducing a 
new similarity metric which is combined with the conventional metric so as to avoid the parameter setting, which is often 

determined with the requirement of adequate domain knowledge. Unlike the conventional version of the kNN algorithm, 

the proposed algorithm employs the multivariate linear regression model to estimate the weights for the final output, based 
on a set of data, which is smoothed by a Wavelet technique. A series of experiments have been performed, based on a set 

of traffic flow data reported from serval different countries, to examine the adaptive determination of parameters and the 

smoothing effect. Additional experiments have been conducted to evaluate the competent performance for the proposed 
algorithm by comparing to a number of widely-used imputing algorithms. 
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1. Introduction 

Perceiving traffic flow parameters through detectors 

facilitate an accurate estimate of traffic state, which 

can be used at various aspects, such as dynamic rout-

ing or signal control. Therefore, investment has in-

tensively put into the construction of traffic detec-

tors in recent years. However, in the data collection 

process, it is inevitable that various unpredictably 

malfunctions, such as communication interruption, 

power outages or storage equipment damage, can 

occur even for the advanced detectors, resulting in a 

number of data missing. For example, the solar-

powered sensors, which are recently promoted in 

China, cannot function properly sometimes during 

the period of rainy season. On the other hand, the 

data transmission problems can be interrupted for 

short time when an update is performed for the com-

munication system (e.g., from 3rd generation to 4th 

generation).  

The missing data problem and associated effects 

have been constantly reported in recent years. Miss-

ing data problem, where some subsets of traffic data 

become missing, has greatly hindered the collection 

and subsequent analysis, estimation and prediction 

of traffic flow data (Wang  and Mao, 2019). In Texas 

Transportation Institute, the rate of missing data is 

between 16% and 93% (Li, Zhang, Wang, et al., 

2019). Tan et al. found more than 5% are missing 

from the PeMS traffic flow database (Tan, Feng, 

Feng et al., 2013). Similarly, the missing ratio of the 

traffic data reported in (Xu, Li  and Shi, 2010) can 

be as high as 90%, with the average ratio of 50% for 

the period of 7 years. An analysis on the traffic flow 

data obtained from the microwave sensors amounted 

on the Beijing ring expressways reports up to 50% 

of data missing (Ma, Luan, Du, et al., 2017). It is no 

doubt that the missing data build an intangible bar-

rier for understanding and modelling the traffic phe-

nomenon due to incomplete information. 

To remedy the undesired effects caused by the pres-

ence of missing data, a number of imputing ap-

proaches have been proposed in last few decades. 

These imputation methods have taken different pro-

cedures to provide plausible estimations for those 

missing values given other observed data, based on 

the assumption that the real traffic system usually 

possess inherent structure due to its flow dynamic 

characteristics. Although these existing approaches 

can be classified from various aspects (e.g., the an-

gle of data construction (Tan, Feng, Feng et al., 

2013)), the mechanism adopted by each method to 

infer the values for missing data mostly determines 

the performance of imputation and application 

scope. Therefore, we have grouped the existing im-

puting approaches into three categories, prediction-

based, interpolation-based and statistical learning-

based imputing approaches. However, it should be 

aware that there is a possibility for a few approaches 

which can fit into the different categories from dif-

ferent view of point. 

 

1.1. Prediction-based imputing approaches 

The approaches which fall in this category usually 

take advantage of sample data to build a model to 

account for the mapping relationship between his-

torical data and future data and the model is subse-

quently used to predict the values for the missing 

data. Typical examples of this category include 

Bayesian networks (BNs) (Zhang, Sun,  and Yu, 

2004; Ghosh, Basu,  and O’Mahony, 2007), auto-

regressive integrated moving average (ARIMA) 

(Zhong, Sharma,  and Lingras, 2004), Adaptive Spa-

tial-Temporal Correlations (Wang, Zhang, Piao, et 

al., 2019), feed-forward neural network (Vlahogi-

anni, Karlaftis,  and Golias, 2005), Convolutional 

Neural Network (Zhuang, Ke  and Wang, 2019), 

spatio-temporal cokriging (Bae, Kim, Lim, et al., 

2018), Fuzzy C-Means Method (Tang, Wang, 

Zhang, et al., 2015), and support vector regression 

(Castro-Neto, Jeong, Jeong et al., 2009). In addition, 

the regression techniques, such as linear or polyno-

mial regression, can also be used to estimate the val-

ues for the missing data. Although these approaches 

can even model the highly non-linear relationship 

between independent and dependent variables for 

the prediction purpose, the use of continuous chunks 

in the time series can significantly degrade the im-

putation performance due to inefficient use of all ob-

served data. 

 

1.2. Interpolation-based imputing approaches 

The simplest interpolation method is the nearest-

neighbour interpolation, which uses the value at the 

previous time instant nearest to the instant of a miss-

ing data or at the same time instant of the previous 

day (Chen,  and Shao, 2000). This imputing ap-

proach is often a favourable choice if the real time is 

one of the rigid requirements. A slightly complicated 

approach is to fill the missing data by averaging the 

observed data which are close to the missing data in 
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time generally. More complicated interpolation ap-

proaches include linear, spline, and polynomial 

(e.g., Lagrange's interpolation formula (Stoeck,  and 

Prajwowski, 2010)), etc. The kind of imputing ap-

proaches can be further divided into two groups, in-

terpolation and extrapolation. Although the phrase, 

‘interpolation’, is generally used to refer these two 

situations, there is a difference between interpola-

tion and extrapolation according to whether the 

missing data are in between or outside of the ob-

served data. As these approaches force the interpo-

lating function passes exactly through the given data 

points, spurious features in the region of missing 

data may be generated. 

 

1.3. Statistical learning-based imputing ap-

proaches 

One of representative approaches in this category is 

k Nearest neighbours (kNN) (Sliva, H. D.,  and 

Perera, A. S., 2017; Esawey, M. E.,  and Sayed, T., 

2012) which attempts to derive the missing data 

from a number of similar patterns. Local least 

squares (LLS) (Kim, Golub,  and Park, 2005) also 

takes advantage of the information from similar pat-

terns to infer the possible values for missing data. 

The principal component analysis (PCA) based 

methods, such as probabilistic principal component 

analysis (PPCA) and Bayesian principal component 

analysis (BPCA), extract the statistical characteris-

tics of the observed data and map the relationship 

between the observed data and latent variables by 

constructing a number of principle components (Qu, 

Li, Zhang et al., 2009; Li, Li,  and Li, 2014). PPCA 

employs the expectation-maximization algorithm to 

determine the projection matrix for the later varia-

bles, but BPCA applies the Bayesian estimation ap-

proach. As these approaches make use of both global 

and local information of the observed data, better 

performance than the other conventional imputation 

methods (e.g., the nearest-neighbour interpolation, 

the spline interpolation, and the mean historical 

methods) has been reported for the traffic flow data. 

However, it has been shown that there is no signifi-

cant difference with regards to the imputation accu-

racy between the different PCA-based approaches 

(Li, Li  and Li, 2013). In recent years, a number of 

tensor-based approaches have been proposed to im-

pute the missing data by taking advantage of traffic 

spatial–temporal information (Chen, He  and Sun, 

2019). In theory, more correlation information con-

sidered in the imputation process can generally pro-

duce more accurate estimation for the missing data. 

However, numerous detectors are deployed outside 

urban areas and most of them are sparsely spaced, 

resulting in a very weak spatial correlation. 

Without loss of generality, the work presented in this 

paper ignores the spatial correlation information in 

an attempt to deliver an imputation method which 

can also applied to the rural areas where the spatial 

correlation is generally weak. Based on the traffic 

temporal information, we propose a novel imputa-

tion approach based on the kNN method which has 

been reported to be one of competent imputation ap-

proaches in terms of accuracy and efficiency 

(Loukopoulos, Sampath, Pilidis, et al., 2016). The 

motivation for the improvements of the kNN ap-

proach is presented in the next section. The proposed 

imputation approach is introduced in Section 3. Sec-

tion 4 presents the experiments and the correspond-

ing results. The concluding remarks are provided in 

Section 5. 

 

2. Motivation 

In this section, the imputation problem of traffic 

flow data considered in this paper is firstly formu-

lated, followed by a short introduction to the kNN 

algorithm. Based on the analysis of the stochastic 

characteristic of traffic flow, the difficulties to apply 

the kNN algorithm for traffic flow imputation are 

discussed, which motivates us to make an improve-

ment. 
 

2.1. The traffic flow imputation problem 

As stated above, the spatial information is not con-

sidered in the imputation process in this paper and, 

consequently, the imputation problem can be mod-

elled as follows. Suppose that we have a set of data 

X for D days. That is: 
 

𝐗𝐷 = [𝐱1, 𝐱2, … , 𝐱𝐷]T (1) 
 

in which the dth day’s traffic flow data is a vector, 

whose elements are sequentially arranged in time or-

der, as follows: 
 

𝐱𝐷 = [𝑥𝑑
1 , 𝑥𝑑

2, … , 𝑥𝑑
𝑀]T;   𝑑 =  1, 2, … , 𝐷 (2) 

 

Note that M is the number of recordings of traffic 

flow and determined based on the recording fre-

quency adopted in the detector system. 
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The last column in the data set X contains a number 

of missing data, whose values are required to esti-

mate. In this paper, it is assumed that values in the 

data set are missing at random, which means the 

missing data are independent to each other. 

Note that it is not necessary that the set of data X 

contains the traffic flow recordings from consecu-

tive days. In order to take advantage of the observed 

data information, the data set may reject the data 

containing missing values in the previous days, but 

instead, include the fully observed data even in ear-

lier days. Furthermore, it is natural to exclude the 

data which contain the different traffic patterns due 

to obvious reasons (e.g., the traffic patterns for 

weekdays and weekends are generally different). 

 

2.2. kNN Algorithm 

As a non-parametric method, the kNN algorithm has 

enjoyed great popularity in many classification and 

regression applications due to its simplicity. The 

idea of the kNN algorithm for the missing data im-

putation is based on the assumption of local similar-

ity in data space: the missing data embedded in a 

time series are expected to have the similar values, 

as those observed in the same time instants but con-

tained in the historical time series if the counterparts 

in those time series are similar.  

Figure 1 illustrates the imputation process for a num-

ber of missing data by using the kNN algorithm. 

Suppose we have a set of data, which has been ar-

ranged as a matrix X with each row and column de-

noting the time of day and day, respectively. Due to 

the fact that the traffic data are normally sensed at 

the fixed time instant with a constant interval, we 

simply use the index to indicate the time instant and 

day, respectively, when the data are collected. The 

last column vector, xD, contains a number of missing 

data, each of which is denoted by a question mark in 

Figure 1. For convenience, we separate the missing 

data from the observed data and the corresponding 

parts are denoted by 𝐱𝐷
miss and 𝐱𝐷

obse, respectively. 

That is: 

 

𝐱𝐷 = [𝐱𝐷
miss, 𝐱𝐷

obse]
T

 (3) 

 

The first step is to find k nearest neighbours for the 

observed part 𝐱𝐷
obse, which can be mathematically 

expressed as: 

 

𝐈 = argmin
𝐱𝑑

obse∈𝐇

∑ 𝑠(𝐱𝑑
obse, 𝐱𝐷

obse)

𝑘

𝑖=1

 (4) 

 

where H contains the historical data 𝐱𝑑
obse (d = 1, 

2, …, D-1) and s is a function to estimate the dis-

tance for 𝐱𝑑
obse and 𝐱𝐷

obse. A number of metrics, such 

as Manhattan, Chebychev, Levenshtein (Abbasifard, 

Ghahremani,  and Naderi, 2014), have been pro-

posed in literature. However, the Euclidean distance 

has been widely chosen as the similarity metric since 

a large number of problems can be defined in the 

Euclidean space. 

The number of neighbours, k, is usually specified by 

users based on their experiences or trail-and-error. 

As shown in Figure 1, the column vectors marked 

with green colour are the k neighbours nearest to the 

observed part of the last column. Subsequently, the 

weight of ith neighbour can be obtained by normal-

izing the distance 𝑠𝑖 over the summation of the dis-

tances of the k neighbours, as follows: 

 

𝑤𝑖 =
𝑠𝑖

∑ 𝑠𝑗
𝑘
𝑗=1

;    𝑖 =  1, 2, … , 𝑘 (5) 

 

Finally, the missing value 𝑥𝑚 at mth time instant can 

be estimated as: 

 

𝑥𝑚 = ∑ 𝑤𝑖𝑥𝑖
𝑚

𝑘

𝑖=1

 (6) 

 

For easy reference in the sequel, we summarize the 

primary steps to perform the kNN algorithm in Fig-

ure 2. Although the implementation of the kNN al-

gorithm is straightforward, a number of elements, 

such as the parameter k and similarity metric, are 

critical to the success of imputation of missing data. 

To determine these critical elements, domain 

knowledge is frequently employed, thus resulting in 

a number of variants of the kNN algorithm. An ex-

cellent review on the variants of the kNN algorithm 

can be found in the works (Bhatia,  and Vandana, 

2010). However, to the best of our knowledge, there 

are few attempts to consider the traffic stochastic 

characteristic to improve the imputation accuracy of 

the kNN algorithm. The next sub-section presents an 

analysis of the traffic stochastic characteristic with a 

discussion of possible difficulties that may arise 

from the stochastic characteristic.  
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Fig. 1. Illustration of the kNN algorithm used to im-

pute the data 

 

2.3. The Effect of Stochastic Characteristics  

Traffic flow often exhibits a strong stochastic char-

acteristic, which can be attributed to various factors 

such as stochastic travel demands or drivers’ 

bounded rationality. To examine the stochastic char-

acteristic of traffic flow, the signal-to-noise ratios 

(SNRs) have been estimated for three sets of traffic 

flows collected in the Portland metropolitan area, the 

freeways in California, and the sub-urban area of 

Beijing. For easy reference, the three data sets used 

in the following experiments are denoted as ‘Portal’ 

(i.e., the Portland Oregon Regional Transportation 

Archive Listing (http://portal.its.pdx.edu, 2018)), 

‘PeMS’ (i.e., the freeway Performance Measure-

ment System (http://pems.dot.ca.gov, 2017)), and 

‘Beijing’ (i.e., a provincial road in the sub-urban 

area of Beijing). The aggregated 5-minute flow data 

of 5 weekdays in the three sets were used to examine 

the stochastic characteristics of traffic flow. 

Figure 3 shows the power spectrums of the traffic 

flows with the SNR values obtained for the three 

data sets. From the results presented in Figure 3, it is 

evident that the traffic flows have a significant sto-

chastic characteristic. It should be aware that the 

term “noise” is used here to reflect the stochastic of 

traffic flow, but it does not mean the noise that re-

flects nothing about the intrinsic characteristics of 

traffic flow. Due to the stochastic characteristic of 

traffic flow, k nearest neighbours, determined by the 

kNN algorithm with the similarity metric of Euclid-

ean distance, can vary with different data missing. 

To examine such sensitivity, the three data sets were 

used with the missing rate ranging from 0.05 to 0.9 

with the interval of 0.05. For each missing rate, 100 

independent runs were performed and the missing 

data were randomly selected for each run. With the 

parameter k set to be 4 for all tests, the order of k 

nearest neighbours determined for each run was rec-

orded. 

To reflect the fluctuation of the order of k nearest 

neighbours, we define a ratio, named as Difference 

Ratio, as the number of the unique order of k nearest 

neighbours over 100 independent runs. The results 

obtained for the three data set are illustrated in Fig-

ure 4. From Figure 4, it can be seen that the uncer-

tainty in the determination of k nearest neighbours 

increases with missing rates for all test data. Such 

uncertainty resulted from the stochastic characteris-

tic of traffic flow can obviously affect the imputation 

performance. To remedy this issue, we propose a 

mild solution, which is described in Section 3, in-

stead of striving hard for the exact answer. 

 

 

 
Fig. 2. The structure of the kNN algorithm 
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(a) Portal data set (SNR = 8.35 dB) 

 
(b) PeMS data set (SNR = 8.54 dB) 

 
(c) Beijing data set (SNR = 3.53 dB) 

Fig. 3. The power spectrums of the traffic flows for 

the three data sets 

 

 
Fig 4. Difference ratios (the number of the unique 

order of k nearest neighbours over 100 inde-

pendent runs) for each missing rate for the 

three data sets 

3. Methodology  

This section begins with an introduction of the struc-

ture of the improved version of kNN, followed by an 

explanation for the modified implementation.  

As shown in Figure 5, the algorithm starts with the 

preparation of data set which includes the traffic 

flow with missing data and the historical data with-

out missing values. For conveniences, we use “cur-

rent” and “historical” data in the sequel to refer the 

flow data of a day with and without missing values. 

Obviously, the current data containing the missing 

values are required to impute. Next, the similarity is 

measured for each historical time series data with re-

spect to the current flow data, based on two metrics, 

namely interweaving degree and Euclidean distance, 

which are introduced in the following sub-section. 

According to the similarities estimated, the histori-

cal flow data are classified into different groups, 

which can be used to identify k nearest neighbors. 

Subsequently, the k nearest neighbors are subject to 

a smoothing process, before those data are employed 

to build a regression model. Finally, the values for 

the missing data can be obtained by applying the re-

gression model constructed. 

 

 
Fig. 5. The structure of the improved kNN algorithm 

 

4. The Identification of k Nearest Neighbours 

As explained in Section 2, the stochastic character-

istic of traffic flow makes it difficult to correctly 

identify the nearest neighbours when using the con-

ventional similarity metrics. This difficulty is 

stemmed from the fact that the random fluctuation 

of traffic flow makes the nearest neighbours indis-

tinguishable. Instead of strenuously discriminating 

the neighbouring ranks for those that are highly in-

terwove, we decide to classify those indistinguisha-

ble neighbours into one group and the remaining into 
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another group. For convenience, those two groups 

are called “neighbouring group” and “remote 

group”, respectively, in this paper. As shown in Fig-

ure 5, two similarity metrics, namely interweaving 

degree and Euclidean distance, are employed here to 

separate the historical time series data into the cor-

responding groups. Consequently, four groups, de-

noted as “NN”, “NR”, “RN”, and “RR”, can be 

formed by combining neighbouring and remote 

groups for the two metrics (e.g., “NR” representing 

neighbouring group for the first metric, interweav-

ing degree, and remote group for the second, Euclid-

ean distance). The elements in the “NN” group are 

selected as the k nearest neighbours to be used in the 

subsequent process. In such way, the parameter, k, 

can be adaptively determined without the need to be 

predefined by users. Note that it is possible that 

empty set can be obtained for “NN” group and, if so, 

the historical data in the neighbouring group with the 

metric of Euclidean distance will be used as nearest 

neighbours. 

The interweaving degree proposed in this paper is 

defined as follows: 
 

𝑟 =
𝑁𝑐

𝑁
 (7) 

 

where N and Nc denote the number of points of a 

time series and the number of crossing points be-

tween two time series, respectively. After linearly 

interpolating each successive pair of data points for 

a time series, it is straightforward to determine the 

crossing points for each pair of line segments. 

After obtaining the interweaving degrees, a simple 

clustering process is performed by classifying each 

neighbouring series with respect to the two centres, 

which are defined as the two extreme values of the 

interweaving degrees calculated, and it will be clas-

sified into the neighbouring group if its interweaving 

degree is closer to the largest interweaving degree 

(i.e., the centre of neighbouring group). The main 

reason to adopt such simple classification is to re-

duce possible computation overhead. The same pro-

cedure is also employed to classify the neighbouring 

series for the metric of Euclidean distance. 
 

5. The Smoothing Process 

The indistinguishable neighbours determined previ-

ously are all subject to a smoothing process to elim-

inate the random effect on the following process. 

While a wide spectrum of smoothing techniques, 

such as moving average filter (Arce, 2005), Butter-

worth filter (De Boor, 2001), and smoothing spline 

(Bianchi,  and Sorrentino, 2007) etc, has been re-

ported in literature, the smoothing technique based 

on wavelet transform (Misiti,  and Misiti, 2007) is 

employed here to eliminate the random effect of traf-

fic flow as it is able to localize the characteristics in 

the temporal and frequency domains by the hierar-

chically organized decompositions (Chui, 1992). 

Except for the theoretical soundness of the wavelet 

based smoothing technique, the decomposition level 

in practice is one of the critical factors, which has 

significant impact on the smoothing performance 

(El-Dahshan, 2011). If the smoothing process per-

forms successfully, the part removed from the orig-

inal time series data should manifest the stochastic 

process which can be modelled as a white noise. Ac-

cording to the Wiener–Khinchin theorem (Zbilut,  

and Marwan, 2008), the corresponding correlation 

function 𝐴𝑁(𝜏) can be derived as follows: 
 

 𝐴𝑁(𝜏) =
𝐶0

4𝜋
∫ 𝑒𝑗𝑤𝜏𝑑𝑤 =

1

2
𝐶0𝛿(𝜏)

∞

−∞

 (8) 

 

where 𝑤 is the frequency, 𝜏 is the time shift, 𝐶0 is a 

constant and δ(τ) = 1 for τ = 0, and 0, otherwise. 

Then, the autocorrelation coefficient is: 
 

𝑎𝑁(𝜏) =
𝐴𝑁(𝜏)

𝐴0(𝜏)
 (9) 

 

Ideally, the part removed after smoothing process 

should be a random noise-like time series and its 

corresponding coefficient of autocorrelation should 

be either 1 or 0 for τ=0 or τ>0. However, it is un-

likely to have such pure noise-like time series by the 

smoothing operation in general. Therefore, the ap-

proximate 95% confidence interval for a noise-like 

time series is also computed with the sample auto-

correlation. With the dependence structure for a set 

of time lags, the number of coefficients that fall 

within the confidence bounds are counted. That is, 

the more the coefficients fall into the confidence 

bounds, the more likely it is a random noise. Such 

calculation is performed for each decomposition 

level, which is incremented by one at each time be-

fore a pre-defined maximum level is reached. The 

decomposition level with which the random part of 

a time series can be maximally removed will be used 

as the final decomposition level to smooth the time 

series data. 
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6. The Estimation of Missing Values 

As explained in Section 2, it is likely that the sto-

chastic characteristics of traffic flow result in an er-

ror in the similarity measurement for the imputation 

by the kNN algorithm. As a consequence, such error 

can be embedded to the weights when the weighted 

sum of k nearest neighbours is used to produce the 

final estimation. Therefore, we adopt a regression 

model in this work to estimate the missing values in 

order to avoid the possible weighting errors. Alt-

hough a large variety of regression models is avail-

able, we employ the multivariate linear regression 

model in this work to estimate the missing values 

with consideration in compromising imputation ac-

curacy and computational overhead. 

Multivariate linear regression is a generalization of 

simple linear regression to the case where two or 

more explanatory variables and a response variable 

can be modelled by a linear function (Wichura, 

2006). The basic model for multivariate linear re-

gression can be represented as: 

 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + 𝜖𝑖 (10) 

 

for each p dimensional observed data indexed as 

i = 1, …, n. In our case, the set of observed data are 

those that k neighbouring time series have the ob-

served responses at the corresponding time instants, 

with dimension p being equal to k. That is to say that 

we use the regression technique rather than the sim-

ilarity distance to determine the weights for the final 

estimation. 

 

7. Experiments 

In order to evaluate the imputation performance of 

the improved kNN algorithm, we have designed and 

performed a series of experiments for the three data 

sets, as described in Section 2.3. Before conducting 

the experiments, the traffic flow data have been pre-

pared as follows. The aggregated 5-minute flow data 

of 9 weekdays were chosen for each data set and a 

number of data in the traffic flow of the last day was 

selected randomly and removed as the missing data. 

Note that it is not necessary to choose traffic data of 

successive days. In the experiments presented in the 

following, a set of missing rates, ranging from 0.05 

to 0.9 with an interval of 0.05, was used to evaluate 

the imputation performance for different missing sit-

uations. For each missing rate, 100 independent runs 

were performed with a number of missing data ran-

domly chosen for each run. Therefore, the perfor-

mance averaged over the 100 runs for each experi-

ment are reported in the section after introducing the 

performance indicators adopted for the subsequent 

performance evaluations. 

 

7.1. Performance Indicators and Prediction   

Examples 

The performance indicators, namely mean absolute 

percentage error (MAPE) and variance of absolute 

percentage error (VAPE) (Zhang,  and Liu, 2011), 

have been chosen to evaluate the imputation perfor-

mance. While MAPE calculates the average relative 

error between the estimated values and actual ob-

served data, VAPE represents the performance sta-

bility. 

 

MAPE =
1

𝑁
∑ |

�̂�(𝑖) − 𝑦(𝑖)

𝑦(𝑖)
|

𝑁

𝑖=1

× 100% (11) 

VAPE = var (|
�̂�(𝑖) − 𝑦(𝑖)

𝑦(𝑖)
|) × 100% (12) 

 

where 𝑦(𝑖) and �̂�(𝑖) are ith true and predicted values 

and N is the number of data. 

Figure 6 shows the results imputed by our proposed 

algorithm for traffic flow data set ‘PeMS’, ‘Portal’ 

and ‘Beijing’, respectively, with the missing rate of 

0.7 and Table 1 summaries the parameter k and the 

coefficients of the multivariate linear regression de-

termined for the experiments shown in Fig 6. As the 

parameter k is determined in an adaptive way, the 

values of k are different for the three tests.  

The sold lines in Figure 6 indicate the true data of 

traffic flow and the data imputed for a number of 

missing data are marked with “o”. Note that a num-

ber of data are randomly selected from the original 

data (as the solid lines in Figure 6) and discarded ac-

cording to the missing rate specified, before the pro-

posed algorithm is applied to impute these missing 

data. As show in Figure 6, traffic flow from the data 

set ‘Portal’ is relatively larger in magnitude than 

those from ‘Portal’ and ‘Beijing’. Furthermore, it 

can also be seen that the missing data can be esti-

mated with a reasonable accuracy, even though the 

traffic flows fluctuate significantly over time of day. 
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Table 1. The coefficients of multivariate linear re-

gression and parameter k determined for 

the results shown in Fig 6. 
Data set k Coefficients of multivariate linear regression 

PeMS 3 {0.113, 0.535, 0.316} 

Portal 4 {0.077, 0.073, 0.701, 0.077} 

Beijing 2 {0.421, 0.566} 

 

7.2. Comparison to the Original kNN Algorithm  

The first experiment has been designed to evaluate 

the performance of the proposed imputing algorithm 

by comparing it to the original kNN algorithm which 

has been used as a basis to make specific improve-

ments. As the parameter k is critical for both the 

original kNN algorithm and the proposed one, a fair 

comparison can be made with the same parameter k 

for the both imputing algorithms. For the original 

kNN algorithm, the parameter k is generally speci-

fied by users before performing the imputation for 

missing data and the lack of sufficient domain 

knowledge can induce a subjective decision on the 

parameter. On the contrary, the improved kNN algo-

rithm automatically determine the parameter with 

the assistance of two similarity metrics. Therefore, 

we first use the proposed algorithm to determine the 

parameter k which is subsequently employed by the 

original kNN algorithm. Table 2 lists the MAPE and 

VAPE values obtained by the original kNN algo-

rithm and improved version, denoted as “kNN” and 

“IkNN”, respectively. 

 

(a) (b)  

(c)  

Fig. 6. The imputed results for (a) PeMS data set, (b) Portal data set, (c) Beijing data set, with missing 

rate of 0.7



68 

 

Wang, Y., Xiao, Y., Lai, J., Chen, Y., 

Archives of Transport, 54(2), 59-73, 2020 

 

 

Table 2. The performance of imputation by the original and improved kNN algorithms (denoted as kNN and 

IkNN) over 100 independent runs for different missing rates with the same parameter k 

Missing 

Rate 

PeMS Portal Beijing 

KNN IKNN Mean 

k 

KNN IKNN Mean 

k 

KNN IKNN Mean 

k MAPE VAPE MAPE VAPE MAPE VAPE MAPE VAPE MAPE VAPE MAPE VAPE 

0.05 36.30 77.90 30.01 34.29 2.14 26.18 10.34 24.15 9.14 4.99 34.31 18.58 30.26 13.61 2.07 

0.10 37.38 71.91 31.55 37.60 2.16 25.57 9.81 23.76 8.71 4.95 35.37 18.32 30.42 12.71 2.20 

0.15 35.28 52.36 30.11 30.30 2.34 25.65 10.00 23.63 8.82 4.88 34.80 18.39 31.13 14.19 2.37 

0.20 36.33 63.15 30.89 33.47 2.26 25.20 8.86 23.34 8.22 4.86 35.12 18.37 31.20 14.73 2.44 

0.25 36.19 65.79 30.77 34.48 2.29 25.87 10.71 23.68 9.13 4.72 34.69 17.44 31.02 14.22 2.43 

0.30 36.60 65.94 31.11 34.68 2.36 25.75 10.14 23.38 8.48 4.74 34.37 17.30 30.87 14.33 2.49 

0.35 36.49 71.09 30.68 35.80 2.38 26.01 10.24 23.86 8.95 4.89 35.00 17.67 31.12 14.96 2.48 

0.40 36.81 67.77 31.16 36.15 2.45 25.97 9.88 23.71 8.83 4.46 35.21 18.22 32.28 16.13 2.61 

0.45 35.94 58.57 30.65 33.10 2.47 25.98 10.49 23.61 9.08 4.47 35.28 18.59 31.88 15.51 2.61 

0.50 35.84 53.68 30.76 32.33 2.48 26.00 10.34 23.59 8.69 4.50 34.90 17.92 31.65 15.01 2.57 

0.55 37.16 64.96 31.12 34.51 2.34 26.37 11.13 23.93 9.28 4.57 35.34 18.37 31.95 15.74 2.51 

0.60 36.99 62.19 31.39 34.76 2.36 26.59 11.15 24.21 9.52 4.32 34.78 17.94 31.71 14.95 2.72 

0.65 36.70 60.43 31.60 35.80 2.48 26.60 10.87 24.52 9.92 4.12 35.19 18.36 31.61 15.08 2.48 

0.70 37.58 63.27 31.77 36.44 2.29 26.40 10.59 24.49 9.82 4.26 35.00 18.18 32.03 15.44 2.59 

0.75 37.19 61.80 31.70 36.19 2.36 26.33 10.53 24.42 9.75 4.30 34.98 18.34 32.20 15.60 2.58 

0.80 37.13 61.67 32.38 37.43 2.19 26.44 10.76 24.83 10.10 4.04 35.02 17.65 32.38 15.75 2.44 

0.85 36.80 60.09 31.95 37.45 2.42 26.69 10.87 25.25 10.32 3.99 35.78 18.81 32.37 15.31 2.30 

0.90 38.02 61.11 32.94 39.45 2.26 26.98 11.71 27.09 12.41 3.89 35.69 18.80 32.56 15.10 2.21 

As shown in Table 2, the values of MAPE and 

VAPE obtained by IkNN are lower than those by 

kNN in most cases, indicating the proposed algo-

rithm outperforms the original kNN algorithm when 

the parameter k is same. The reductions in MAPE 

and VAPE are most profound for the PeMS data set, 

as compared to other two sets. However, by a close 

inspection to the performance of the proposed algo-

rithm, there are increasing trends for the values of 

MAPE and VAPE for the test data sets with the 

missing rates, implying that the imputation perfor-

mance is inversely affected with the increase of 

missing rate. The parameter k, determined by the 

proposed algorithm, are similar for the data set of 

PeMS and Beijing, but different for the data set of 

Portal. For the data set of PeMS and Beijing, the pa-

rameter k, determined by the proposed algorithm, in-

dicates that only 2 or 3 historical time series can be 

classified as the neighbours. On the other hand, the 

more historical time series are similar in the data set 

of Portal, as the parameter k determined ranges from 

3 to 5. 

Figure 7 shows the dependence and adaptation of pa-

rameter k on the missing rate. Note that we use dif-

ferent colours, as shown in colour bar, to indicate the 

value of k determined by the proposed method de-

scribed in Section 3.1. From Figure 7, it seems that 

the parameter k fluctuates slightly when missing rate 

is low, but there is an increasing tendency in fluctu-

ation of the parameter k when the number of missing 

data becomes large. When there are a few missing 

data, the information used to estimate the similarity 

is relatively adequate and, therefore, this may par-

tially explain the relatively small fluctuation in the 

parameter k over 100 independent runs. On the other 

hand, only small part of the time series is available 

for the similarity measure and different part may 

provide different local information, resulting in a 

large fluctuation of the parameter k over 100 runs. 
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7.3. Evaluation of Smoothing Effect  

The experiments presented in this sub-section aim to 

evaluate the imputation performance enhanced with 

the smoothing process. To this end, the three sets of 

traffic flow data with the missing rates ranging from 

0.05 to 0.9 were imputed by the proposed algorithm 

without and with the smoothing process and the val-

ues of MAPE and VAPE obtained are listed in Table 

3, along with the decomposition level automatically 

determined. Obviously, the results (see Table 3) in-

dicate the smoothing process can effectively im-

prove the imputation accuracy and reduce the fluc-

tuations over the 100 independent runs for each 

missing rate. In addition, it can also be seen that the 

imputation performance, in terms of averaged accu-

racy and fluctuation over 100 independent runs, is 

slightly degraded with the increase of missing rate. 

The decomposition levels determined for the data 

sets of PeMS and Beijing are close to 3 and 4, re-

spectively, while the decomposition levels for the 

data set of Portal is blew 3. This implies that the sto-

chastic degree of the traffic flow in the data set of 

Portal is less than those in the data sets of PeMS and 

Beijing. 

7.4. Comparison to Other Typical Methods  

Additional experiment was performed to make a 

comparative study to a set of existing imputation 

methods, namely interpolation-based techniques, 

ARIMA, PPCA, and nearest historical recording 

methods (denoted as ‘NH’ in the followings) which 

are typical imputing algorithms falling into the pre-

diction, interpolation, and statistical-learning based 

imputation algorithm categories. There are three in-

terpolation techniques, i.e., linear, spline, and pchip 

interpolation, used for comparison and denoted as 

‘Linear’, ‘Spline’, and ‘Pchip’, respectively, in the 

followings, for easy reference. The parameters of 

ARIMA, p and q, were determined by calculating 

the autocorrelation and partial autocorrelation coef-

ficients, while the augmented Dickey–Fuller test 

was used to help determine the differential parame-

ter, d. For the imputation by PPCA, three principle 

components, determined by trail-and-error, was 

used for reconstruction. The simplest imputing 

method adopted here for comparison is the nearest 

historical recordings method that the recordings for 

the same time period in the previous day are used to 

impute the missing values. 

(a) (b)  

(c)  

Fig. 7. Parameter k determined for each independent run with different missing rate. (a) PeMS data set, 

(b) Portal data set, (c) Beijing data set 
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Table 3. The performance of imputation by the proposed algorithm with and without smoothing process over 

100 independent runs for different missing rates 

Missing 

Rate 

PeMS Portal Beijing 

Without With Without With Without With 

MAPE VAPE MAPE VAPE Level MAPE VAPE MAPE VAPE Level MAPE VAPE MAPE VAPE Level 

0.05 34.38 71.32 30.01 34.29 3.00 26.11 10.45 24.15 9.14 2.39 33.11 15.96 30.26 13.61 3.90 

0.1 35.42 71.44 31.55 37.60 3.00 26.33 10.58 23.76 8.71 2.38 33.74 16.29 30.42 12.71 3.85 

0.15 33.35 53.05 30.11 30.30 2.99 26.18 10.54 23.63 8.82 2.38 33.07 15.57 31.13 14.19 3.74 

0.2 33.79 55.66 30.89 33.47 2.95 25.82 9.42 23.34 8.22 2.37 33.87 16.75 31.20 14.73 3.67 

0.25 33.81 59.29 30.77 34.48 2.95 26.45 11.40 23.68 9.13 2.35 33.42 16.07 31.02 14.22 3.67 

0.3 34.28 62.72 31.11 34.68 2.96 26.23 10.53 23.38 8.48 2.35 33.59 16.38 30.87 14.33 3.58 

0.35 34.28 65.49 30.68 35.80 2.93 26.67 10.95 23.86 8.95 2.33 33.96 16.52 31.12 14.96 3.50 

0.4 34.37 62.18 31.16 36.15 2.95 26.34 10.23 23.71 8.83 2.41 33.88 16.05 32.28 16.13 3.54 

0.45 33.84 54.21 30.65 33.10 2.91 26.64 11.18 23.61 9.08 2.38 34.39 17.04 31.88 15.51 3.54 

0.5 33.86 51.40 30.76 32.33 2.91 26.55 10.93 23.59 8.69 2.37 33.72 16.49 31.65 15.01 3.45 

0.55 34.54 55.84 31.12 34.51 2.93 26.78 11.65 23.93 9.28 2.37 34.22 16.78 31.95 15.74 3.36 

0.6 34.92 58.01 31.39 34.76 2.91 27.10 11.67 24.21 9.52 2.40 33.58 15.65 31.71 14.95 3.35 

0.65 34.80 54.20 31.60 35.80 2.94 27.19 11.48 24.52 9.92 2.37 34.39 17.22 31.61 15.08 3.33 

0.7 35.29 58.38 31.77 36.44 2.96 27.05 11.52 24.49 9.82 2.38 34.22 16.40 32.03 15.44 3.34 

0.75 35.28 57.61 31.70 36.19 2.92 27.09 11.65 24.42 9.75 2.42 34.52 17.02 32.20 15.60 3.22 

0.8 36.14 57.41 32.38 37.43 2.99 27.28 11.52 24.83 10.10 2.45 34.66 16.92 32.38 15.75 3.34 

0.85 35.49 55.08 31.95 37.45 2.89 27.92 11.99 25.25 10.32 2.45 35.20 17.48 32.37 15.31 3.17 

0.9 36.62 56.68 32.94 39.45 2.71 29.26 14.24 27.09 12.41 2.44 35.39 17.74 32.56 15.10 3.22 

Figure 8 (a), (b), and (c) present the values of MAPE 

obtained by the test imputing algorithms for the 

three data sets. It is evident that the proposed algo-

rithm can produce more accurate imputation than 

other test algorithms for different missing rates, even 

though a similar performance can be obtained by 

ARIMA for the data sets, ‘PeMS’ and ‘Portal’, when 

the missing rate is small. In general, the ‘Spline’ and 

‘Pchip’ interpolation techniques perform poorly, 

while the ‘Linear’ interpolation can produce similar 

accurate imputation as ‘ARIMA’ and ‘PPCA’. 

Amongst all the existing algorithms used for com-

parison, ‘PPCA’ performs better than others when a 

number of missing data becomes large. In addition, 

it is interesting to note that the simplest imputing 

strategy, ‘NH’, can produce medium accuracy for 

the imputation with various missing rate among all 

test algorithms and its performance seems to vary 

slightly for different missing rate. 

On the other hand, the values of VAPE obtained by 

the test algorithms are shown in Figure 9. For the 

data sets, ‘Portal’ and ‘Beijing’, the proposed algo-

rithm can produce least fluctuation when different 

data are removed as missing data. However, 

ARIMA performed more stable than the other algo-

rithms when it was used to impute for data set 

‘PeMS’. Again, it can be seen that poor perfor-

mances in terms of stability are generated by the 

‘Spline’ and ‘Pchip’ interpolation techniques. In ad-

dition, a reasonable stability can be achieved when 

the ‘Linear’ interpolation algorithm was used to im-

pute missing data. Furthermore, a relatively medium 

stability can be achieved by the ‘NH’ method, and 

there is no significant difference in the stability for 

different missing rate, indicating it is insensitive to 

the number of missing data. 

 

8. Conclusions 

The work presented in this paper attempts to im-

prove the imputation performance by proposing a 

modified version of the kNN algorithm based on the 

analysis of the stochastic characteristic of traffic 

flow which results in a number of difficulties to de-

termine the critical elements of the original kNN al-

gorithm. The improvements have been motivated by 

the intention to eliminate both the uncertainties re-

sulted from the stochastic characteristic of traffic 

flow and the requirement to predefine parameters. 

A series of experiments for a set of traffic flow data 

has been performed to evaluate the imputation im-

provements for the proposed algorithm from various 

aspects. The comparative study indicates the pro-

posed algorithm outperforms the other conventional 

approaches in terms of imputation errors and corre-

sponding fluctuations in general. Furthermore, no 

need to predefine parameters is a unique advantage 
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of the developed imputing algorithm over the other 

commonly-used algorithms. One of the critical pa-

rameters can be automatically determined in an 

adaptive fashion to fit different traffic patterns. 

On the other hand, the experimental results also im-

ply a number of weaknesses, which is required to 

improve in the further research. The current strategy 

to adaptively determine the critical parameter cannot 

guarantee an optimal imputation in terms of accu-

racy, even though the current version outperforms 

the original kNN algorithm with same parameter set-

tings. Also, it is interesting to investigate the impu-

tation performance if other regression techniques in-

stead of multivariate linear model are employed. 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. The values of MAPE obtained by a set of im-

puting algorithms for (a) PeMS data set, (b) 

Portal data set, (c) Beijing data set 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. The values of VAPE obtained by a set of im-

puting algorithms for (a) PeMS data set, (b) 

Portal data set, (c) Beijing data set 
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